1,534 research outputs found

    alpha - HgS Nanocrystals: Synthesis, Structure and Optical Properties

    Full text link
    Well-separated mercury sulfide (HgS) nanocrystals are synthesized by a wet chemical route. Transmission electron microscopy studies show that nanocrystals are nearly spherical in shape with average size of 9 nm. Grazing angle X-ray diffraction confirms that HgS nanocrystals are in cinnabar phase. Particle induced X-ray emission and Rutherford back scattering spectrometry analysis reveal HgS nanocrystals are stoichiometric and free from foreign impurities. The optical absorption measurements show two excitonic peaks corresponding to electron-heavy hole and electron-light hole transitions, which are blue shifted by 0.1 and 0.2 eV, respectively, from its bulk value, due to quantum size effect. The experimental data obtained by optical absorption measurement is simulated with a theoretical model considering the particle size distribution as Gaussian

    Editorial: Sustainable Production of Nutrient-Dense Foods

    Get PDF
    Feeding the world's growing population presents plant-based agriculture with enormous challenges as it is estimated that current agricultural production must increase 60 to 100 percent all else being unchanged (food waste levels, current trends in population growth and food consumption). The quantities and qualities of necessary food components, e.g., proteins, carbohydrates, lipids, and vitamins and minerals in plant products are highly relevant for human and animal consumption. These plant foods also contain a varied and limited range of bioactive compounds that have been associated with the prevention of chronic diseases including heart and circulation problems, cancer, diabetes, cataracts, and age-related functional decline

    Pulsating flow in a planar diffuser upstream of automotive catalyst monoliths

    Get PDF
    The flow distribution across automotive exhaust catalysts has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency) and load (flow rate). This study reports on flow measurements made across catalyst monoliths placed downstream of a wide-angled planar diffuser presented with pulsating flow. Cycle-resolved particle image velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (defined as the J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J ∼ 3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re

    Numerical Simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere

    Get PDF
    We investigate the excitation of magnetoacoustic-gravity waves generated from localized pulses in the gas pressure as well as in vertical component of velocity. These pulses are initially launched at the top of the solar photosphere that is permeated by a weak magnetic field. We investigate three different configurations of the background magnetic field lines: horizontal, vertical and oblique to the gravitational force. We numerically model magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations numerically with the use of the FLASH code to simulate the dynamics of the lower solar atmosphere. The initial pulses result in shocks at higher altitudes. Our numerical simulations reveal that a small-amplitude initial pulse can produce magnetoacoustic-gravity waves, which are later reflected from the transition region due to the large temperature gradient. The atmospheric cavities in the lower solar atmosphere are found to be the ideal places that may act as a resonator for various oscillations, including their trapping and leakage into the higher atmosphere. Our numerical simulations successfully model the excitation of such wave modes, their reflection and trapping, as well as the associated plasma dynamics

    An assessment of CFD applied to steady flow in a planar diffuser upstream of an automotive catalyst

    Get PDF
    Flow maldistribution across automotive exhaust catalysts significantly affects their conversion efficiency. Flow behaviour can be predicted using computational fluid dynamics (CFD). This study investigates the application of CFD to modelling flow in a 2D system consisting of a catalyst monolith downstream of a wide-angled planar diffuser presented with steady flow. Two distinct approaches, porous medium and individual channels, are used to model monoliths of length 27 mm and 100 mm. Flow predictions are compared to particle image velocimetry (PIV) measurements made in the diffuser and hot wire anemometry (HWA) data taken downstream of the monolith. Both simulations compare favourably with PIV measurements, although the models underestimate the degree of mixing in the shear layer at the periphery of the emerging jet. Tangential velocities are predicted well in the central jet region but are overestimated elsewhere, especially at the closest measured distance, 2.5 mm from the monolith. The individual channels model is found to provide a more consistently accurate velocity profile downstream of the monolith. Maximum velocities, on the centre line and at the secondary peak near to the wall, are reasonably well matched for the cases where the flow is more maldistributed. Under these conditions, a porous medium model remains attractive because of low computational demand

    Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    Full text link
    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \AA, and Hα\alpha from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as \sim215 km s1^{-1} in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in Hα\alpha and TRACE 171 \AA\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be the driver of a radial velocity pulse outwards that accelerates this plasma blob in the solar atmosphere. In support of identification of the possible driver of the observed eruption, we solve the two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed supersonic plasma blob. The numerical modelling closely match the observed velocity, evolution of multi-temperature plasma, and quick vanishing of the blob found in the observations. Under typical coronal conditions, such blobs may also carry an energy flux of 7.0×106\times10^{6} ergs cm2^{-2} s1^{-1} to re-balance the coronal losses above active regions.Comment: Solar Physics; 22 Pages; 8 Figure

    Universal Equation for Efimov States

    Full text link
    Efimov states are a sequence of shallow 3-body bound states that arise when the 2-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a 3-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of 4He atoms. We also extend Efimov's theory to include the effects of deep 2-body bound states, which give widths to the Efimov states.Comment: 8 pages, revtex4, 2 ps figures, table with numerical values of universal function adde

    Optical Activity From Extra Dimension

    Full text link
    Optical activity, like Faraday effect, is a rotation of the plane of polarization of propagating light in a medium and can be attributed to different sources with distinct signatures. In this note we discuss the effect of optical activity {\it{in vacuum}} due to Kaluza-Klein scalar field ϕ\phi, in the presence of an external electro-magnetic field. The astrophysical implication of this effect is indicated. We also point out the possibility of observing the same in laboratory conditions.Comment: Four Page

    Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps

    Full text link
    We calculated, within the Gross-Pitaevskii formalism, the critical number of atoms for Bose-Einstein condensates with two-body attractive interactions in cylindrical traps with different frequency ratios. In particular, by using the trap geometries considered by the JILA group [Phys. Rev. Lett. 86, 4211 (2001)], we show that the theoretical maximum critical numbers are given approximately by Nc=0.55(l0/a)N_c = 0.55 ({l_0}/{|a|}). Our results also show that, by exchanging the frequencies ωz\omega_z and ωρ\omega_\rho, the geometry with ωρ<ωz\omega_\rho < \omega_z favors the condensation of larger number of particles. We also simulate the time evolution of the condensate when changing the ground state from a=0a=0 to a<0a<0 using a 200ms ramp. A conjecture on higher order nonlinear effects is also added in our analysis with an experimental proposal to determine its signal and strength.Comment: (4 pages, 2 figures) To appear in Physical Review
    corecore