2,202 research outputs found

    ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids

    Full text link
    We introduce an unsupervised feature learning approach that embeds 3D shape information into a single-view image representation. The main idea is a self-supervised training objective that, given only a single 2D image, requires all unseen views of the object to be predictable from learned features. We implement this idea as an encoder-decoder convolutional neural network. The network maps an input image of an unknown category and unknown viewpoint to a latent space, from which a deconvolutional decoder can best "lift" the image to its complete viewgrid showing the object from all viewing angles. Our class-agnostic training procedure encourages the representation to capture fundamental shape primitives and semantic regularities in a data-driven manner---without manual semantic labels. Our results on two widely-used shape datasets show 1) our approach successfully learns to perform "mental rotation" even for objects unseen during training, and 2) the learned latent space is a powerful representation for object recognition, outperforming several existing unsupervised feature learning methods.Comment: To appear at ECCV 201

    The functions of mucosal T cells in containing the indigenous commensal flora of the intestine

    Get PDF
    There is an immense load of non-pathogenic commensal bacteria in the distal small intestine and the colon of mammals. The physical barrier that prevents penetration (translocation) of these organisms into the body is a simple epithelium comprised of the single enterocyte/colonocyte cell layer with its overlying mucus. In this review, we discuss the roles of intestinal T cells in initiating and regulating innate and adaptive mucosal immune responses of the mucosal immune system that avoid or limit penetration of the commensal intestinal bacteria

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease

    Get PDF
    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21rac, but not p21ras, attenuated the production of ROS from activated microglia. Inhibition of both p21ras and p21rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21ras and p21rac in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Oral administration of NaPB reduced nigral activation of p21ras and p21rac, protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders

    Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation

    Get PDF
    \ua9 2023 The Authors. Published under the terms of the CC BY 4.0 license. Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in “gain-of-function” conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1−/− mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1−/− and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1−/− mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders

    An administrative data merging solution for dealing with missing data in a clinical registry: adaptation from ICD-9 to ICD-10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously described a method for dealing with missing data in a prospective cardiac registry initiative. The method involves merging registry data to corresponding ICD-9-CM administrative data to fill in missing data 'holes'. Here, we describe the process of translating our data merging solution to ICD-10, and then validating its performance.</p> <p>Methods</p> <p>A multi-step translation process was undertaken to produce an ICD-10 algorithm, and merging was then implemented to produce complete datasets for 1995–2001 based on the ICD-9-CM coding algorithm, and for 2002–2005 based on the ICD-10 algorithm. We used cardiac registry data for patients undergoing cardiac catheterization in fiscal years 1995–2005. The corresponding administrative data records were coded in ICD-9-CM for 1995–2001 and in ICD-10 for 2002–2005. The resulting datasets were then evaluated for their ability to predict death at one year.</p> <p>Results</p> <p>The prevalence of the individual clinical risk factors increased gradually across years. There was, however, no evidence of either an abrupt drop or rise in prevalence of any of the risk factors. The performance of the new data merging model was comparable to that of our previously reported methodology: c-statistic = 0.788 (95% CI 0.775, 0.802) for the ICD-10 model versus c-statistic = 0.784 (95% CI 0.780, 0.790) for the ICD-9-CM model. The two models also exhibited similar goodness-of-fit.</p> <p>Conclusion</p> <p>The ICD-10 implementation of our data merging method performs as well as the previously-validated ICD-9-CM method. Such methodological research is an essential prerequisite for research with administrative data now that most health systems are transitioning to ICD-10.</p

    Transient Focal Cerebral Ischemia/Reperfusion Induces Early and Chronic Axonal Changes in Rats: Its Importance for the Risk of Alzheimer's Disease

    Get PDF
    The dementia of Alzheimer's type and brain ischemia are known to increase at comparable rates with age. Recent advances suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer's disease (AD), however, the neuropathological relationship between these two disorders is largely unclear. It has been demonstrated that axonopathy, mainly manifesting as impairment of axonal transport and swelling of the axon and varicosity, is a prominent feature in AD and may play an important role in the neuropathological mechanisms in AD. In this study, we investigated the early and chronic changes of the axons of neurons in the different brain areas (cortex, hippocampus and striatum) using in vivo tracing technique and grading analysis method in a rat model of transient focal cerebral ischemia/reperfusion (middle cerebral artery occlusion, MCAO). In addition, the relationship between the changes of axons and the expression of β-amyloid 42 (Aβ42) and hyperphosphorylated Tau, which have been considered as the key neuropathological processes of AD, was analyzed by combining tracing technique with immunohistochemistry or western blotting. Subsequently, we found that transient cerebral ischemia/reperfusion produced obvious swelling of the axons and varicosities, from 6 hours after transient cerebral ischemia/reperfusion even up to 4 weeks. We could not observe Aβ plaques or overexpression of Aβ42 in the ischemic brain areas, however, the site-specific hyperphosphorylated Tau could be detected in the ischemic cortex. These results suggest that transient cerebral ischemia/reperfusion induce early and chronic axonal changes, which may be an important mechanism affecting the clinical outcome and possibly contributing to the development of AD after stroke

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface
    corecore