290 research outputs found

    An unusual T-cell childhood acute lymphoblastic leukemia harboring a yet unreported near-tetraploid karyotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Near-tetraploid (model #81-103) and near-triploid (model #67-81) karyotypes are found in around 1% of childhood acute lymphoblastic leukemia. Due to its rarity, these two cytogenetic subgroups are generally included in the hyperdiploid group (model # > 51). Therefore separate informations about these two subgroups are limited to a few reports. Some studies found that near-tetraploidy is relatively more frequent in higher median ages and it is associated to Frech-American-British Classification subtype L2. Although the mechanisms by which leukemic blast cells divide is still unclear, studies have suggested that hyperdiploidy, near-triploidy and near-tetraploidy do not seem to share the same mechanism.</p> <p>Findings</p> <p>Herewith, we present a new childhood T-acute lymphoblastic leukemia case of near-tetraploid karyotype with loss of two p53-gene copies, characterized in detail by cytogenetic and molecular studies.</p> <p>Conclusion</p> <p>We suggest that p53 is a good target gene to be screened, once p53 is one of the main effectors of cell cycle checkpoints.</p

    A systematic review of current knowledge of HIV epidemiology and of sexual behaviour in Nepal

    Get PDF
    OBJECTIVE: To systematically review information on HIV epidemiology and on sexual behaviour in Nepal with a view to identifying gaps in current knowledge. METHODS: Systematic review covering electronic databases, web-based information, personal contact with experts and hand searching of key journals. RESULTS: HIV-1 seroprevalence has been rising rapidly in association with high-risk behaviours, with current levels of 40% amongst the nation's injecting drug users and approaching 20% amongst Kathmandu's female commercial sex workers (FCSWs). HIV seroprevalence remains low in the general population (0.29% of 15–49 year olds). There are significant methodological limitations in many of the seroprevalence studies identified, and these estimates need to be treated with caution. There are extensive migration patterns both within the country and internationally which provide the potential for considerable sexual networking. However, studies of sexual behaviour have focused on FCSWs and the extent of sexual networks within the general population is largely unknown. CONCLUSIONS: Whilst some of the ingredients are present for an explosive HIV epidemic in Nepal, crucial knowledge on sexual behaviour in the general population is missing. Research on sexual networking is urgently required to guide HIV control in Nepal. There is also a need for further good-quality epidemiological studies of HIV seroprevalence

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure

    Entangled Quantum States of Magnetic Dipoles

    Full text link
    Free magnetic moments usually manifest themselves in Curie Laws, where weak external magnetic fields produce magnetizations diverging as the reciprocal 1/T of the temperature. for a variety of materials that do not disply static magnetism, including doped semiconductors and certain rare earth intermetallics, the 1/T law is changed to a power law T^-a with a<1. We report here that a considerably simpler material, namely an insulating magneticsalt can also display such a power law, and show via comparison to specific heat data and numerical simulations that quantum mechanics is crucial for its formation. Two quantum mechanical phenomena are needed, namely level splitting - which affects the spectrum of excited states - and entanglement - where the wavefunction of a system with several degrees of freedom cannot be written as a product of wavefunctions for each degree of freedom. Entanglement effects become visible for remarkably small tunnelling terms, and are turned on well before tunnelling has visible effects on the spectrum. Our work is significant because it illustrates that entanglement is at the very heart of a very simple experimental observation for an insulating quantum spin system.Comment: 17 pages, 4 figure

    Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Get PDF
    Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K) and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs), materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS) technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs) and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS) capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots) was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism

    Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    Get PDF
    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the β€œcode of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic prΓ©cis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p
    • …
    corecore