1,559 research outputs found

    “Time” To Turn

    Get PDF

    Does patient-provider race/ethnicity concordance impact outcomes for adults with lupus?

    Full text link
    Background: Health disparities exist among the 1.5 million Americans with lupus, with women of color bearing higher disease rates and burden. Complex reasons include genetics, comorbidities, and socioeconomics. These factors may lead to differences in health-related outcomes in lupus. Aim: To determine if patient-provider racial/ethnic concordance plays a role in outcomes for adults with lupus. Method: For this scoping review, the authors searched PubMed Medline and CINAHL using keywords and subject headings for lupus, race or ethnicity, and patient-health professional concordance. Results: Despite an intentionally broadened search of literature, the authors identified a lack of studies examining the topic. Conclusions: Certain factors may explain the results: a lack of scientists studying the phenomenon, a focus of funding on bench science, and a non-diverse U.S. healthcare provider workforce. Other factors may exist. Implications for practice, policy, and research are presented

    P-odd and CP-odd Four-Quark Contributions to Neutron EDM

    Full text link
    In a class of beyond-standard-model theories, CP-odd observables, such as the neutron electric dipole moment, receive significant contributions from flavor-neutral P-odd and CP-odd four-quark operators. However, considerable uncertainties exist in the hadronic matrix elements of these operators strongly affecting the experimental constraints on CP-violating parameters in the theories. Here we study their hadronic matrix elements in combined chiral perturbation theory and nucleon models. We first classify the operators in chiral representations and present the leading-order QCD evolutions. We then match the four-quark operators to the corresponding ones in chiral hadronic theory, finding symmetry relations among the matrix elements. Although this makes lattice QCD calculations feasible, we choose to estimate the non-perturbative matching coefficients in simple quark models. We finally compare the results for the neutron electric dipole moment and P-odd and CP-odd pion-nucleon couplings with the previous studies using naive factorization and QCD sum rules. Our study shall provide valuable insights on the present hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the uncertainty of the calculation is adde

    Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.

    Get PDF
    Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers

    Developing the Improving Post-event Analysis and Communication Together (IMPACT) Tool to Involve Patients and Families in Post-Event Analysis

    Get PDF
    The analysis of harmful errors is typically led by a team within the hospital and includes clinicians and staff who were involved at the time of the event. However, the patient and family are often left out of this process and are not asked to participate in the investigation. Because little guidance is available for facilitating patient input, an interprofessional team convened to develop a semi-structured tool to be used in eliciting patient feedback. Some 72 persons who had experienced adverse events were interviewed. Using a thematic analysis approach, the team learned that 51% of the interviewees preferred to participate in event analysis directly through an interview and 47% recommended that patients and families should be offered the opportunity to provide their views immediately (within 24-48 hours of the event). The resulting tool, IMPACT, incorporates a conversational flow of questions that allows patients to tell their story, focus their attention on specific causative factors, and give recommendations to improve healthcare in their institutions or to prevent further harm

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Evolutionary approaches to signal decomposition in an application service management system

    Get PDF
    The increased demand for autonomous control in enterprise information systems has generated interest on efficient global search methods for multivariate datasets in order to search for original elements in time-series patterns, and build causal models of systems interactions, utilization dependencies, and performance characteristics. In this context, activity signals deconvolution is a necessary step to achieve effective adaptive control in Application Service Management. The paper investigates the potential of population-based metaheuristic algorithms, particularly variants of particle swarm, genetic algorithms and differential evolution methods, for activity signals deconvolution when the application performance model is unknown a priori. In our approach, the Application Service Management System is treated as a black- or grey-box, and the activity signals deconvolution is formulated as a search problem, decomposing time-series that outline relations between action signals and utilization-execution time of resources. Experiments are conducted using a queue-based computing system model as a test-bed under different load conditions and search configurations. Special attention was put on high-dimensional scenarios, testing effectiveness for large-scale multivariate data analyses that can obtain a near-optimal signal decomposition solution in a short time. The experimental results reveal benefits, qualities and drawbacks of the various metaheuristic strategies selected for a given signal deconvolution problem, and confirm the potential of evolutionary-type search to effectively explore the search space even in high-dimensional cases. The approach and the algorithms investigated can be useful in support of human administrators, or in enhancing the effectiveness of feature extraction schemes that feed decision blocks of autonomous controllers
    corecore