39 research outputs found

    Development of an Innovative Mobile Phone-Based Newborn Care Training Application

    Get PDF
    Mobile infrastructure in low - and middle-income countries (LMIC) has shown immense potential to reach the unreachable. Healthcare providers (HCP) are one such group who are at the frontline of the fight against infant mortality in LMICs. Mortality among newborn infants (birth to 28 days) now accounts for around 45% of all under 5-years child mortality. Birth asphyxia is one of the three leading causes of newborn death; neonatal resuscitation training, among health care providers, reduces mortality from birth asphyxia. We have developed a mobile phone-based training app, called mobile Helping Babies Survive (mHBS), to support the training of health care providers on neonatal resuscitation. mHBS is integrated with the District Health Information System (DHIS2) platform, which is used in over 60 countries around the world. The mHBS/DHIS2 training app is a part of an application suite which includes another DHIS2-linked data collection app, mHBS tracker. The mHBS training application has the potential to scale-up integration with other neonatal training apps. Ultimately, the mHBS training suite will provide new insights into healthcare worker education along with the necessary tools for effective care of newborn babies

    An integrated 2-D model of a lithium ion battery: The effect of material parameters and morphology on storage particle stress

    No full text
    An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag

    The use of non-dimensional parameters to study stress in lithiumion battery electrode storage particles

    No full text
    Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME

    South Asian Immigration to United States: A Brief History Within the Context of Race, Politics, and Identity

    No full text
    In this chapter we focus on key themes that impact South Asian diasporic communities in general. First, we briefly chart the South Asian immigrant journeys to the U.S. from the late 1800s through the watershed mid-century immigration policies to contemporary times. Second, we examine the contradictions between the model minority discourses that are sustained within the South Asian diaspora and the racism and discrimination experienced by South Asian immigrants particularly in the context of post 9/11 America. Finally, we conclude by looking at some of the ways in which first, second, and subsequent generations in the South Asian diaspora have creatively and politically engaged with their identity

    Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples

    Get PDF
    Background: The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. Methods: A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Results: Icelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. Conclusions: The primary particle-specific concern is the potential for future eruptions of Iceland’s volcanoes to generate fine, respirable material and, thus, to increase ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions
    corecore