55 research outputs found

    ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development

    Get PDF
    Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin–antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin–antitoxin family consists of the ε/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin ε. Upon degradation of ε, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. ε/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded ε/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin–antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of ε/ζ toxin–antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF

    Radha Kamal Mukerjee and the Indian working class: seventy years in retrospect

    No full text

    Collagen Formation Assessed by N-Terminal Propeptide of Type 3 Procollagen Is a Heritable Trait and Is Associated With Liver Fibrosis Assessed by Magnetic Resonance Elastography

    No full text
    N-terminal propeptide of type 3 procollagen (PRO-C3) is a biomarker of liver fibrosis in nonalcoholic fatty liver disease (NAFLD). This study examines the association between PRO-C3 concentration and liver fibrosis assessed by magnetic resonance elastography (MRE)-measured stiffness (MRE-stiffness) and the heritability of PRO-C3 concentration in a cohort of twins and families with and without NAFLD. We performed a cross-sectional analysis of a well-characterized prospective cohort of 306 participants, including 44 probands with NAFLD-cirrhosis and their 72 first-degree relatives, 24 probands with NAFLD without advanced fibrosis and their 24 first-degree relatives, and 72 controls without NAFLD and their 72 first-degree relatives. Liver steatosis was assessed by magnetic resonance imaging proton density fat fraction, and liver fibrosis was assessed by MRE-stiffness. Serum PRO-C3 was assessed by competitive, enzyme-linked immunosorbent assay. We assessed the familial correlation of PRO-C3 concentration, the shared gene effects between PRO-C3 concentration and liver steatosis and fibrosis, and the association between PRO-C3 concentration and genetic variants in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing (MBOAT), and glucokinase regulator (CGKR) genes. In multivariable-adjusted models including age, sex, body mass index, and ethnicity, serum PRO-C3 correlated strongly with liver fibrosis (r(2) = 0.50, P \textless 0.001) and demonstrated robust heritability (h(2) , 0.36; 95% confidence interval [CI], 0.07, 0.59; P = 0.016). PRO-C3 concentration and steatosis had a strong genetic correlation (shared genetic determination: 0.62; 95% CI, 0.236, 1.001; P = 0.002), whereas PRO-C3 concentration and fibrosis had a strong environmental correlation (shared environmental determination: 0.55; 95% CI, 0.317, 0.717; P \textless 0.001). PRO-C3 concentrations were higher in carriers of the TM6SF2 rs58542926-T allele compared with noncarriers: 15.7 (+/- 10.5) versus 10.8 (+/- 5.7) ng/L (P = 0.047). Conclusion: Serum PRO-C3 correlates with MRE-assessed fibrosis, is heritable, shares genetic correlation with liver steatosis and shares environmental correlation with liver fibrosis. PRO-C3 concentration appears to be linked to both fibrosis and steatosis and increased in carriers of the TM6SF2 rs58542926 risk allele
    corecore