2,869 research outputs found

    How Can Viral Dynamics Models Inform Endpoint Measures in Clinical Trials of Therapies for Acute Viral Infections?

    Get PDF
    Acute viral infections pose many practical challenges for the accurate assessment of the impact of novel therapies on viral growth and decay. Using the example of influenza A, we illustrate how the measurement of infection-related quantities that determine the dynamics of viral load within the human host, can inform investigators on the course and severity of infection and the efficacy of a novel treatment. We estimated the values of key infection-related quantities that determine the course of natural infection from viral load data, using Markov Chain Monte Carlo methods. The data were placebo group viral load measurements collected during volunteer challenge studies, conducted by Roche, as part of the oseltamivir trials. We calculated the values of the quantities for each patient and the correlations between the quantities, symptom severity and body temperature. The greatest variation among individuals occurred in the viral load peak and area under the viral load curve. Total symptom severity correlated positively with the basic reproductive number. The most sensitive endpoint for therapeutic trials with the goal to cure patients is the duration of infection. We suggest laboratory experiments to obtain more precise estimates of virological quantities that can supplement clinical endpoint measurements

    Using Clinical Trial Simulators to Analyse the Sources of Variance in Clinical Trials of Novel Therapies for Acute Viral Infections.

    No full text
    BACKGROUND:About 90% of drugs fail in clinical development. The question is whether trials fail because of insufficient efficacy of the new treatment, or rather because of poor trial design that is unable to detect the true efficacy. The variance of the measured endpoints is a major, largely underestimated source of uncertainty in clinical trial design, particularly in acute viral infections. We use a clinical trial simulator to demonstrate how a thorough consideration of the variability inherent in clinical trials of novel therapies for acute viral infections can improve trial design. METHODS AND FINDINGS:We developed a clinical trial simulator to analyse the impact of three different types of variation on the outcome of a challenge study of influenza treatments for infected patients, including individual patient variability in the response to the drug, the variance of the measurement procedure, and the variance of the lower limit of quantification of endpoint measurements. In addition, we investigated the impact of protocol variation on clinical trial outcome. We found that the greatest source of variance was inter-individual variability in the natural course of infection. Running a larger phase II study can save up to $38 million, if an unlikely to succeed phase III trial is avoided. In addition, low-sensitivity viral load assays can lead to falsely negative trial outcomes. CONCLUSIONS:Due to high inter-individual variability in natural infection, the most important variable in clinical trial design for challenge studies of potential novel influenza treatments is the number of participants. 100 participants are preferable over 50. Using more sensitive viral load assays increases the probability of a positive trial outcome, but may in some circumstances lead to false positive outcomes. Clinical trial simulations are powerful tools to identify the most important sources of variance in clinical trials and thereby help improve trial design

    GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology

    Get PDF
    Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies. (c) 2006 Elsevier Inc. All rights reserved

    Partial Homology Relations - Satisfiability in terms of Di-Cographs

    Full text link
    Directed cographs (di-cographs) play a crucial role in the reconstruction of evolutionary histories of genes based on homology relations which are binary relations between genes. A variety of methods based on pairwise sequence comparisons can be used to infer such homology relations (e.g.\ orthology, paralogy, xenology). They are \emph{satisfiable} if the relations can be explained by an event-labeled gene tree, i.e., they can simultaneously co-exist in an evolutionary history of the underlying genes. Every gene tree is equivalently interpreted as a so-called cotree that entirely encodes the structure of a di-cograph. Thus, satisfiable homology relations must necessarily form a di-cograph. The inferred homology relations might not cover each pair of genes and thus, provide only partial knowledge on the full set of homology relations. Moreover, for particular pairs of genes, it might be known with a high degree of certainty that they are not orthologs (resp.\ paralogs, xenologs) which yields forbidden pairs of genes. Motivated by this observation, we characterize (partial) satisfiable homology relations with or without forbidden gene pairs, provide a quadratic-time algorithm for their recognition and for the computation of a cotree that explains the given relations

    Programmable in situ amplification for multiplexed imaging of mRNA expression

    Get PDF
    In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization

    Методи оцінки ризиків в інформаційній системі аналізу екологічного стану басейну малої ріки

    Get PDF
    В інформаційній системі аналізу стану басейну малої ріки запропоновано методи оцінки ризиків на основі імовірнісних та статистичних оцінок, формалізації моделі гри з природою, прогнозування процесів підтоплення земель з використанням ланцюгів Маркова, розглянуто багато критеріальні моделі ризиків.In informational and analytical system of the small rivers’ ecological condition estimation the methods of risks modelling on the basis of likelihood and statistical estimations, formalization of models of game with nature, risk modelling and forecasting processes flooded lands using Markov chains are offered, multicriteria models of risks are considered

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings  We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
    corecore