54 research outputs found

    Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

    Get PDF
    YesHuman identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.The Technology Commercialization Innovation Program (Contracts #121668, #132043) of the Utah Governors Office of Commercial Development, the Scholarship Activitie

    Pronoun Usage in Online Sexual Predation

    No full text

    Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties

    Get PDF
    Major depressive disorder is an extremely debilitating condition affecting millions of people worldwide. Nevertheless, currently available antidepressant medications still have important limitations, such as a low response rate and a time lag for treatment response that represent a significant problem when dealing with individuals who are vulnerable and prone to self-harm. Recent clinical trials have shown that the N-methyl-D-aspartate receptor antagonist, ketamine, can induce an antidepressant response within hours, which lasts up to 2 weeks, and is effective even in treatment-resistant patients. Nonetheless, its use is limited due to its psychotomimetic and addictive properties. Understanding the molecular pathways through which ketamine exerts its antidepressant effects would help in the developing of novel antidepressant agents that do not evoke the same negative side effects of this drug. This review focuses specifically on the effects of ketamine on three molecular mechanisms that are relevant to depression: synaptogenesis, immunomodulation and regulation of glycogen synthase kinase-3 activity
    • …
    corecore