10 research outputs found

    Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA

    Get PDF
    The ability to sequence DNA retrieved from ancient and historical material plays a crucial role in reinforcing evolutionary and anthropological inference. While the focus of the field is largely on analyzing DNA from ancient hominids and other animals, we have also learned from plant ancient DNA (aDNA), in particular, about human farming practices, crop domestication, environment management, species invasion, and adaptation to various environmental conditions. In the following protocols, we outline best practices for plant aDNA isolation, preparation for sequencing, bioinformatic processing, and authentication. We describe the process all the way from processing of archaeological or historical plant material to characterizing and authenticating sequencing reads. In alternative protocols, we include modifications to this process that are tailored to strongly degraded DNA. Throughout, we stress the importance of precautionary measures to successfully analyze aDNA. Finally, we discuss the evolution of the archaeogenomics field and the development of new methods, which both shaped this protocol. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of aDNA Alternate Protocol 1: Isolation of ultra-short DNA (Dabney modification) Support Protocol 1: Preparation of PTB-based mix Support Protocol 2: Preparation of binding buffer Basic Protocol 2: Preparation of genomic libraries Alternate Protocol 2: Preparation of genomic libraries with uracil removal Basic Protocol 3: Bioinformatic processing and authentication of aDNA

    End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia

    Get PDF
    Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections

    Genomic history and ecology of the geographic spread of rice

    Get PDF
    Rice (Oryza sativa) is one of the world’s most important food crops, and is comprised largely of japonica and indica subspecies. Here, we reconstruct the history of rice dispersal in Asia using whole-genome sequences of more than 1,400 landraces, coupled with geographic, environmental, archaeobotanical and paleoclimate data. Originating around 9,000 yr ago in the Yangtze Valley, rice diversified into temperate and tropical japonica rice during a global cooling event about 4,200 yr ago. Soon after, tropical japonica rice reached Southeast Asia, where it rapidly diversified, starting about 2,500 yr BP. The history of indica rice dispersal appears more complicated, moving into China around 2,000 yr BP. We also identify extrinsic factors that influence genome diversity, with temperature being a leading abiotic factor. Reconstructing the dispersal history of rice and its climatic correlates may help identify genetic adaptations associated with the spread of a key domesticated species

    Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA

    Get PDF
    How contemporary plant genomes originated and evolved is a fascinating question. One approach uses reference genomes from extant species to reconstruct the sequence and structure of their common ancestors over deep timescales. A second approach focuses on the direct identification of genomic changes at a shorter timescale by sequencing ancient DNA preserved in subfossil remains. Merged within the nascent field of paleogenomics, these complementary approaches provide insights into the evolutionary forces that shaped the organization and regulation of modern genomes and open novel perspectives in fostering genetic gain in breeding programs and establishing tools to predict future population changes in response to anthropogenic pressure and global warming.From Holocene to Anthropocene: the pace of microevolution in tree
    corecore