4,778 research outputs found

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    X-ray total scattering study of regular and magic-size nanoclusters of cadmium sulphide

    Get PDF
    Four kinds of magic-size CdS clusters and two different regular CdS quantum dots have been studied by x-ray total scattering technique and pair distribution function method. Results for the regular CdS quantum dots could be modelled as a mixed phase of atomic structures based on the two bulk crystalline phases, which is interpreted as representing the effects of stacking disorder. However, the results for the magic-size clusters were significantly different. On one hand, the short-range features in the pair distribution function reflect the bulk, indicating that these structures are based on the same tetrahedral coordination found in the bulk phases (and therefore excluding new types of structures such as cage-like arrangements of atoms). But on the other hand, the longer- range atomic structure clearly does not reflect the layer structures found in the bulk and the regular quantum dots. We compare the effects of two ligands, phenylacetic acid and oleic acid, showing that in two cases the ligand has little effect on the atomic structure of the magic-size nanocluster and in another it has a significant effect

    Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

    Get PDF
    In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic

    Spin 3 cubic vertices in a frame-like formalism

    Full text link
    Till now most of the results on interaction vertices for massless higher spin fields were obtained in a metric-like formalism using completely symmetric (spin-)tensors. In this, the Lagrangians turn out to be very complicated and the main reason is that the higher the spin one want to consider the more derivatives one has to introduce. In this paper we show that such investigations can be greatly simplified if one works in a frame-like formalism. As an illustration we consider massless spin 3 particle and reconstruct a number of vertices describing its interactions with lower spin 2, 1 and 0 ones. In all cases considered we give explicit expressions for the Lagrangians and gauge transformations and check that the algebra of gauge transformations is indeed closed.Comment: 17 pades, no figure

    Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity

    Full text link
    The phase diagram of a correlated material is the result of a complex interplay between several degrees of freedom, providing a map of the material's behavior. One can understand (and ultimately control) the material's ground state by associating features and regions of the phase diagram, with specific physical events or underlying quantum mechanical properties. The phase diagram of the newly discovered iron arsenic high temperature superconductors is particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca, Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material, splits and is suppressed by carrier doping, the suppression being complete around optimal doping. A dome of superconductivity exists with apparent equal ease in the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal state with no long range magnetic order. The question then is what determines the critical doping at which superconductivity emerges, if the AFM order is fully suppressed only at higher doping values. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that critical changes in the Fermi surface (FS) occur at the doping level that marks the onset of superconductivity. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the small hole pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz transition, at the onset of superconductivity. Superconductivity and magnetism are competing states in the iron arsenic superconductors. In the presence of the hole pockets superconductivity is fully suppressed, while in their absence the two states can coexist.Comment: Updated version accepted in Nature Physic

    Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?

    Get PDF
    The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Quantum systems in weak gravitational fields

    Get PDF
    Fully covariant wave equations predict the existence of a class of inertial-gravitational effects that can be tested experimentally. In these equations inertia and gravity appear as external classical fields, but, by conforming to general relativity, provide very valuable information on how Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the International School of Cosmology and Gravitation "Advances in the interplay between quantum and gravity physics" edited by V. De Sabbata and A. Zheltukhin, Kluwer Academic Publishers, Dordrech

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic
    corecore