10 research outputs found

    In-situ upgrading of Napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites

    Get PDF
    This study presents in-situ upgrading of pyrolysis vapour derived from Napier grass over microporous and mesoporous ZSM-5 catalysts. It evaluates effect of process variables such catalyst–biomass ratio and catalyst type in a vertical fixed bed pyrolysis system at 600 °C, 50 °C/min under 5 L/min nitrogen flow. Increasing catalyst–biomass ratio during the catalytic process with microporous structure reduced production of organic phase bio-oil by approximately 7.0 wt%. Using mesoporous catalyst promoted nearly 4.0 wt% higher organic yield relative to microporous catalyst, which translate to only about 3.0 wt% reduction in organic phase compared to the yield of organic phase from non-catalytic process. GC–MS analysis of bio-oil organic phase revealed maximum degree of deoxygenation of about 36.9% with microporous catalyst compared to the mesoporous catalysts, which had between 39 and 43%. Mesoporous catalysts promoted production olefins and alkanes, normal phenol, monoaromatic hydrocarbons while microporous catalyst favoured the production of alkenes and polyaromatic hydrocarbons. There was no significant increase in the production of normal phenols over microporous catalyst due to its inability to transform the methoxyphenols and methoxy aromatics. This study demonstrated that upgrading of Napier grass pyrolysis vapour over mesoporous ZSM-5 produced bio-oil with improved physicochemical properties

    Novel Interactions between Actin and the Proteasome Revealed by Complex Haploinsufficiency

    Get PDF
    Saccharomyces cerevisiae has been a powerful model for uncovering the landscape of binary gene interactions through whole-genome screening. Complex heterozygous interactions are potentially important to human genetic disease as loss-of-function alleles are common in human genomes. We have been using complex haploinsufficiency (CHI) screening with the actin gene to identify genes related to actin function and as a model to determine the prevalence of CHI interactions in eukaryotic genomes. Previous CHI screening between actin and null alleles for non-essential genes uncovered ∌240 deleterious CHI interactions. In this report, we have extended CHI screening to null alleles for essential genes by mating a query strain to sporulations of heterozygous knock-out strains. Using an act1Δ query, knock-outs of 60 essential genes were found to be CHI with actin. Enriched in this collection were functional categories found in the previous screen against non-essential genes, including genes involved in cytoskeleton function and chaperone complexes that fold actin and tubulin. Novel to this screen was the identification of genes for components of the TFIID transcription complex and for the proteasome. We investigated a potential role for the proteasome in regulating the actin cytoskeleton and found that the proteasome physically associates with actin filaments in vitro and that some conditional mutations in proteasome genes have gross defects in actin organization. Whole-genome screening with actin as a query has confirmed that CHI interactions are important phenotypic drivers. Furthermore, CHI screening is another genetic tool to uncover novel functional connections. Here we report a previously unappreciated role for the proteasome in affecting actin organization and function

    Rising to the challenge of surging seas

    No full text

    The Cryosphere and Sea Level

    No full text
    International audienceSeveral times during the history of the Earth extensive ice sheets covered part of the continents. As a result, a significant proportion of freshwater was stored in solid form, which caused a drop in sea level

    Identification of Borrelia Species after Creation of an In-House MALDI-TOF MS Database

    Get PDF
    Lyme borreliosis (LB) is a multisystemic disease caused by Borrelia burgdorferi sensu lato (sl) complex transmitted to humans by Ixodes ticks. B. burgdorferi sl complex, currently comprising at least 19 genospecies, includes the main pathogenic species responsible for human disease in Europe: B. burgdorferi sensu stricto (ss), B. afzelii, and B. garinii. In this study, for the first time, MALDI-TOF MS was applied to Borrelia spp., supplementing the existing database, limited to the species B. burgdorferi ss, B . spielmanii and B. garinii, with the species B. afzelii, in order to enable the identification of all the species potentially implicated in LB in Europe. Moreover, we supplemented the database also with B. hermsii, which is the primary cause of tick-borne relapsing fever in western North America, B. japonica, circulating in Asia, and another reference strain of B. burgdorferi ss (B31 strain). The dendrogram obtained by analyzing the protein profiles of the different Borrelia species reflected Borrelia taxonomy, showing that all the species included in the Borrelia sl complex clustered in a unique branch, while Borrelia hermsii clustered separately. In conclusion, in this study MALDI-TOF MS proved a useful tool suitable for identification of Borrelia spp. both for diagnostic purpose and epidemiological surveillance

    Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S3S_3 S 3 flavor symmetry

    No full text
    corecore