2,123 research outputs found

    Pistons modeled by potentials

    Full text link
    In this article we consider a piston modelled by a potential in the presence of extra dimensions. We analyze the functional determinant and the Casimir effect for this configuration. In order to compute the determinant and Casimir force we employ the zeta function scheme. Essentially, the computation reduces to the analysis of the zeta function associated with a scalar field living on an interval [0,L][0,L] in a background potential. Although, as a model for a piston, it seems reasonable to assume a potential having compact support within [0,L][0,L], we provide a formalism that can be applied to any sufficiently smooth potential.Comment: 10 pages, LaTeX. A typo in eq. (3.5) has been corrected. In "Cosmology, Quantum Vacuum and Zeta Functions: In Honour of Emilio Elizalde", Eds. S.D. Odintsov, D. Saez-Gomez, and S. Xambo-Descamps. (Springer 2011) pp 31

    Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    Get PDF
    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. Β© 2013 Pope et al

    Paradoxical effects of Worrisome Thoughts Suppression: the influence of depressive mood

    Get PDF
    Thought suppression increases the persistence of unwanted idiosyncratic worries thoughts when individuals try to suppress them. The failure of suppression may contribute to the development and maintenance of emotional disorders. Depressive people seem particulary prone to engage in unsuccessful mental control strategies such as thought suppression. Worry has been reported to be elevated in depressed individuals and a dysphoric mood may also contribute for the failure of suppression. No studies examine, however, the suppression of worisome thoughts in individuals with depressive symptoms. To investigate the suppression effects of worrisome thoughts, 46 participants were selected according to the cut-off score of a depressive symptomatology scale and they were divided in two groups (subclinical and nonclinical group). All the individuals took part in an experimental paradigm of thought suppression. The results of the mixed factorial analysis of variance revealed an increased frequency of worrisome thoughts during the suppression phase on depending of the depressive symptoms. These findings confirm that depressive mood can reduce the success of suppression.info:eu-repo/semantics/publishedVersio

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior

    Recurrence in 2D Inviscid Channel Flow

    Full text link
    I will prove a recurrence theorem which says that any HsH^s (s>2s>2) solution to the 2D inviscid channel flow returns repeatedly to an arbitrarily small H0H^0 neighborhood. Periodic boundary condition is imposed along the stream-wise direction. The result is an extension of an early result of the author [Li, 09] on 2D Euler equation under periodic boundary conditions along both directions

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: β€œlevitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Chaperone use during intimate examinations in primary care: postal survey of family physicians

    Get PDF
    BACKGROUND: Physicians have long been advised to have a third party present during certain parts of a physical examination; however, little is known about the frequency of chaperone use for those specific intimate examinations regularly performed in primary care. We aimed to determine the frequency of chaperone use among family physicians across a variety of intimate physical examinations for both male and female patients, and also to identify the factors associated with chaperone use. METHODS: Questionnaires were mailed to a randomly selected sample of 500 Ontario members of the College of Family Physicians of Canada. Participants were asked about their use of chaperones when performing a variety of intimate examinations, namely female pelvic, breast, and rectal exams and male genital and rectal exams. RESULTS: 276 of 500 were returned (56%), of which 257 were useable. Chaperones were more commonly used with female patients than with males (t = 9.09 [df = 249], p < 0.001), with the female pelvic exam being the most likely of the five exams to be attended by a chaperone (53%). As well, male physicians were more likely to use chaperones for examination of female patients than were female physicians for the examination of male patients. Logistic regression analyses identified two independent factors – sex of physician and availability of a nurse – that were significantly associated with chaperone use. For female pelvic exam, male physicians were significantly more likely to report using a chaperone (adjusted Odds Ratio [OR] 40.62, 95% confidence interval [CI] 16.91–97.52). Likewise, having a nurse available also significantly increased the likelihood of a chaperone being used (adjusted OR 6.92, 95% CI 2.74–17.46). This pattern of results was consistent across the other four exams. Approximately two-thirds of respondents reported using nurses as chaperones, 15% cited the use of other office staff, and 10% relied on the presence of a family member. CONCLUSION: Clinical practice concerning the use of chaperones during intimate exams continues to be discordant with the recommendations of medical associations and medico-legal societies. Chaperones are used by only a minority of Ontario family physicians. Chaperone use is higher for examinations of female patients than of male patients and is highest for female pelvic exams. The availability of a nurse in the clinic to act as a chaperone is associated with more frequent use of chaperones

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination
    • …
    corecore