21 research outputs found
Phylogenetic Relationships among Deep-Sea and Chemosynthetic Sea Anemones: Actinoscyphiidae and Actinostolidae (Actiniaria: Mesomyaria)
Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the superfamily Mesomyaria, which includes most of the species that live in chemosynthetic, deep-sea, and polar sea habitats and to test the monophyly of the recently defined clades Actinostolina and Chemosynthina. We found that sea anemones of chemosynthetic environments derive from at least two different lineages: one lineage including acontiate deep-sea taxa and the other primarily encompassing shallow-water taxa
New perspectives on the ecology and evolution of siboglinid tubeworms
Siboglinids are tube-dweling annelids that are important members of deep-sea chemosynthetic communities, which include hydrothermal vents, cold seeps, whale falls and reduced sediments. As adults, they lack a functional digestive system and rely on microbial endosymbionts for their energetic needs. Recent years have seen a revolution in our understanding of these fascinating worms. Molecular systematic methods now place these animals, formerly known as the phyla Pogonophora and Vestimentifera, within the polychaete clade Siboglinidae. Furthermore, an entirely new radiation of siboglinids, Osedax, has just recently been discovered living on whale bones. The unique and intricate evolutionary association of siboglinids with both geology, in the formation of spreading centres and seeps, and biology with the evolution of large whales, offers opportunities for studies of vicariant evolution and the calibration of molecular clocks. Moreover, new advances in our knowledge of siboglinid anatomy coupled with molecular characterization of microbial symbiont communities are revolutionizing our knowledge of host-symbiont relationships in the Metazoa. Despite these advances, considerable debate persists concerning the evolutionary history of siboglinids. Here we review the morphological, molecular, ecological and fossil data in order to address when and how siboglinids evolved. We discuss the role of ecological conditions in the evolution of siboglinids and present possible scenarios of the evolutionary origin of the symbiotic relationships between siboglinids and their endosymbiotic bacteria