68 research outputs found

    Association between the -455T>C promoter polymorphism of the APOC3 gene and the metabolic syndrome in a multi-ethnic sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common polymorphisms in the promoter of the <it>APOC3 </it>gene have been associated with hypertriglyceridemia and may impact on phenotypic expression of the metabolic syndrome (MetS). The rs7566605 marker, located near the <it>INSIG2 </it>gene, has been found to be associated with obesity, making it also a potential genetic determinant for MetS. The objective of this study is to examine the <it>APOC3 </it>-455T>C and the <it>INSIG2 </it>rs7566605 polymorphisms as potential genetic determinants for MetS in a multi-ethnic sample.</p> <p>Methods</p> <p>Subjects were genotyped for both the <it>APOC3 </it>-455T>C and <it>INSIG2 </it>rs7566605 polymorphisms, and classified for the presence or absence of MetS (NCEP ATP III and IDF definitions). The total study population included 2675 subjects (≥18 years of age) from six different geographical ancestries.</p> <p>Results</p> <p>For the overall study population, the prevalence of MetS was 22.6% (NCEP ATP III definition). Carriers of ≥1 copy of <it>APOC3 </it>-455C were more likely to have MetS (NCEP ATP III definition) than noncarriers (carrier odds ratio 1.73, 95% CI 1.40 to 2.14, adjusting for age and study group). The basis of the association was related not only to a higher proportion of -455C carriers meeting the triglyceride and high-density lipoprotein cholesterol criteria, but also the blood pressure criteria compared with wild-type homozygotes. Plasma apo C-III concentrations were not associated with <it>APOC3 </it>-455T>C genotype. The <it>INSIG2 </it>rs7566605 polymorphism was not associated with MetS or measures of obesity.</p> <p>Conclusion</p> <p>Meta-analysis of the sample of multiple geographic ancestries indicated that the functional -455T>C promoter polymorphism in <it>APOC3 </it>was associated with an approximately 2-fold increased risk of MetS, whereas the <it>INSIG2 </it>rs7566605 polymorphism was not associated with MetS.</p

    Relationship of the metabolic syndrome to carotid ultrasound traits

    Get PDF
    BACKGROUND: The metabolic syndrome is associated with increased vascular disease risk. We evaluated two carotid ultrasound measurements, namely intima media thickness and total plaque volume, in a Canadian Oji-Cree population with a high metabolic syndrome prevalence rate. METHODS: As part of the Sandy Lake Complications Prevalence and Risk Factor Study, 166 Oji-Cree subjects (baseline metabolic syndrome prevalence, 44.0%, according to the National Cholesterol Education Program Adult Treatment Panel III guidelines) were examined using a high-resolution duplex ultrasound scanner. RESULTS: Image analysis showed that mean intima media thickness was elevated in subjects with the metabolic syndrome (818 ± 18 vs 746 ± 20 μm), as was total plaque volume (125 ± 26 vs 77.3 ± 17.0 mm(3)). However, after adjustment for age and sex, the differences were significant only for intima media thickness (P = 0.039). Furthermore, a significant trend towards increased intima media thickness was observed with increasing numbers of metabolic syndrome components: mean intima media thickness was highest among individuals with all five metabolic syndrome components compared to those with none (866 ± 55 vs 619 ± 23 μm, P = 0.0014). A similar, but non-significant trend was observed for total plaque volume. CONCLUSION: This is the first study of the relationship between the metabolic syndrome and two distinct carotid ultrasound traits measured in the same individuals. The results suggest that standard intima media thickness measurement shows a more consistent and stronger association with the metabolic syndrome than does total plaque volume

    Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test

    Get PDF
    Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category

    Apolipoprotein C3 Polymorphisms, Cognitive Function and Diabetes in Caribbean Origin Hispanics

    Get PDF
    Apolipoprotein C3 (APOC3) modulates triglyceride metabolism through inhibition of lipoprotein lipase, but is itself regulated by insulin, so that APOC3 represents a potential mechanism by which glucose metabolism may affect lipid metabolism. Unfavorable lipoprotein profiles and impaired glucose metabolism are linked to cognitive decline, and all three conditions may decrease lifespan. Associations between apolipoprotein C3 (APOC3) gene polymorphisms and impaired lipid and glucose metabolism are well-established, but potential connections between APOC3 polymorphisms, cognitive decline and diabetes deserve further attention.We examined whether APOC3 single nucleotide polymorphisms (SNPs) m482 (rs2854117) and 3u386 (rs5128) were related to cognitive measures, whether the associations between cognitive differences and genotype were related to metabolic differences, and how diabetes status affected these associations. Study subjects were Hispanics of Caribbean origin (n = 991, aged 45-74) living in the Boston metropolitan area.Cognitive and metabolic measures differed substantially by type II diabetes status. In multivariate regression models, APOC3 m482 AA subjects with diabetes exhibited lower executive function (P = 0.009), Stroop color naming score (P = 0.014) and Stroop color-word score (P = 0.022) compared to AG/GG subjects. APOC3 m482 AA subjects with diabetes exhibited significantly higher glucose (P = 0.032) and total cholesterol (P = 0.028) compared to AG/GG subjects. APOC3 3u386 GC/GG subjects with diabetes exhibited significantly higher triglyceride (P = 0.004), total cholesterol (P = 0.003) and glucose (P = 0.016) compared to CC subjects.In summary, we identified significant associations between APOC3 polymorphisms, impaired cognition and metabolic dysregulation in Caribbean Hispanics with diabetes. Further research investigating these relationships in other populations is warranted

    Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heritability of cardiovascular risk factors is expected to differ between populations because of the different distribution of environmental risk factors, as well as the genetic make-up of different human populations.</p> <p>Methods</p> <p>The purpose of this analysis was to evaluate genetic and environmental influences on cardiovascular risk factor traits, using a variance component approach, by estimating the heritability of these traits in a sample of 1,666 individuals in 81 families ascertained randomly from a highly admixed population of a city in a rural area in Brazil.</p> <p>Results</p> <p>Before adjustment for sex, age, age<sup>2</sup>, and age × sex interaction, polygenic heritability of systolic (SBP) and diastolic (DBP) blood pressure were 15.0% and 16.4%, waist circumference 26.1%, triglycerides 25.7%, fasting glucose 32.8%, HDL-c 31.2%, total cholesterol 28.6%, LDL-c 26.3%, BMI 39.1%. Adjustment for covariates increased polygenic heritability estimates for all traits mainly systolic and diastolic blood pressure (25.9 and 26.2%, respectively), waist circumference (40.1%), and BMI (51.0%).</p> <p>Conclusion</p> <p>Heritability estimates for cardiovascular traits in the Brazilian population are high and not significantly different from other studied worldwide populations. Mapping efforts to identify genetic loci associated with variability of these traits are warranted.</p

    Association of rs780094 in GCKR with Metabolic Traits and Incident Diabetes and Cardiovascular Disease: The ARIC Study

    Get PDF
    The minor T-allele of rs780094 in the glucokinase regulator gene (GCKR) associates with a number of metabolic traits including higher triglyceride levels and improved glycemic regulation in study populations of mostly European ancestry. Using data from the Atherosclerosis Risk in Communities (ARIC) Study, we sought to replicate these findings, examine them in a large population-based sample of African American study participants, and to investigate independent associations with other metabolic traits in order to determine if variation in GKCR contributes to their observed clustering. In addition, we examined the association of rs780094 with incident diabetes, coronary heart disease (CHD), and stroke over up mean follow-up times of 8, 15, and 15 years, respectively.Race-stratified analyses were conducted among 10,929 white and 3,960 black participants aged 45-64 at baseline assuming an additive genetic model and using linear and logistic regression and Cox proportional hazards models.Previous findings replicated among white participants in multivariable adjusted models: the T-allele of rs780094 was associated with lower fasting glucose (p = 10(-7)) and insulin levels (p = 10(-6)), lower insulin resistance (HOMA-IR, p = 10(-9)), less prevalent diabetes (p = 10(-6)), and higher CRP (p = 10(-8)), 2-h postprandial glucose (OGTT, p = 10(-6)), and triglyceride levels (p = 10(-31)). Moreover, the T-allele was independently associated with higher HDL cholesterol levels (p = 0.022), metabolic syndrome prevalence (p = 0.043), and lower beta-cell function measured as HOMA-B (p = 0.011). Among black participants, the T-allele was associated only with higher triglyceride levels (p = 0.004) and lower insulin levels (p = 0.002) and HOMA-IR (p = 0.013). Prospectively, the T-allele was associated with reduced incidence of diabetes (p = 10(-4)) among white participants, but not with incidence of CHD or stroke.Our findings indicate rs780094 has independent associations with multiple metabolic traits as well as incident diabetes, but not incident CHD or stroke. The magnitude of association between the SNP and most traits was of lower magnitude among African American compared to white participants

    Investigating the complex genetic architecture of ankle-brachial index, a measure of peripheral arterial disease, in non-Hispanic whites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States and is associated with a marked impairment in quality of life and an increased risk of cardiovascular events. Noninvasive assessment of PAD is performed by measuring the ankle-brachial index (ABI). Complex traits, such as ABI, are influenced by a large array of genetic and environmental factors and their interactions. We attempted to characterize the genetic architecture of ABI by examining the main and interactive effects of individual single nucleotide polymorphisms (SNPs) and conventional risk factors.</p> <p>Methods</p> <p>We applied linear regression analysis to investigate the association of 435 SNPs in 112 positional and biological candidate genes with ABI and related physiological and biochemical traits in 1046 non-Hispanic white, hypertensive participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. The main effects of each SNP, as well as SNP-covariate and SNP-SNP interactions, were assessed to investigate how they contribute to the inter-individual variation in ABI. Multivariable linear regression models were then used to assess the joint contributions of the top SNP associations and interactions to ABI after adjustment for covariates. We reduced the chance of false positives by 1) correcting for multiple testing using the false discovery rate, 2) internal replication, and 3) four-fold cross-validation.</p> <p>Results</p> <p>When the results from these three procedures were combined, only two SNP main effects in <it>NOS3</it>, three SNP-covariate interactions (<it>ADRB2 </it>Gly 16 – lipoprotein(a) and <it>SLC4A5 </it>– diabetes interactions), and 25 SNP-SNP interactions (involving SNPs from 29 different genes) were significant, replicated, and cross-validated. Combining the top SNPs, risk factors, and their interactions into a model explained nearly 18% of variation in ABI in the sample. SNPs in six genes (<it>ADD2, ATP6V1B1, PRKAR2B, SLC17A2, SLC22A3, and TGFB3</it>) were also influencing triglycerides, C-reactive protein, homocysteine, and lipoprotein(a) levels.</p> <p>Conclusion</p> <p>We found that candidate gene SNP main effects, SNP-covariate and SNP-SNP interactions contribute to the inter-individual variation in ABI, a marker of PAD. Our findings underscore the importance of conducting systematic investigations that consider context-dependent frameworks for developing a deeper understanding of the multidimensional genetic and environmental factors that contribute to complex diseases.</p

    Expression of ABC Efflux Transporters in Placenta from Women with Insulin-Managed Diabetes

    Get PDF
    Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes

    Linkage analysis of obesity phenotypes in pre- and post-menopausal women from a United States mid-western population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity has a strong genetic influence, with some variants showing stronger associations among women than men. Women are also more likely to distribute weight in the abdomen following menopause. We investigated whether genetic loci link with obesity-related phenotypes differently by menopausal status.</p> <p>Methods</p> <p>We performed univariate and bivariate linkage analysis for the phenotypes of body mass index (BMI), waist (W) and hip (H) circumferences (WC, HC), and WH ratio (WHR) separately among 172 pre-menopausal and 405 post-menopausal women from 90 multigenerational families using a genome scan with 403 microsatellite markers. Bivariate analysis used pair-wise combinations of obesity phenotypes to detect linkage at loci with pleiotropic effects for genetically correlated traits. BMI was adjusted in models of WC, HC and WHR.</p> <p>Results</p> <p>Pre-menopausal women, compared to post-menopausal women, had higher heritability for BMI (<it>h</it><sup>2 </sup>= 94% versus <it>h</it><sup>2 </sup>= 39%, respectively) and for HC (<it>h</it><sup>2 </sup>= 99% versus <it>h</it><sup>2 </sup>= 43%, respectively), and lower heritability for WC (<it>h</it><sup>2 </sup>= 29% versus <it>h</it><sup>2 </sup>= 61%, respectively) and for WHR (<it>h</it><sup>2 </sup>= 39% versus <it>h</it><sup>2 </sup>= 57%, respectively). Among pre-menopausal women, the strongest evidence for linkage was for the combination of BMI and HC traits at 3p26 (bivariate LOD = 3.65) and at 13q13-q14 (bivariate LOD = 3.59). Among post-menopausal women, the highest level of evidence for genetic linkage was for HC at 4p15.3 (univariate LOD = 2.70) and 14q13 (univariate LOD = 2.51). WC was not clearly linked to any locus.</p> <p>Conclusions</p> <p>These results support a genetic basis for fat deposition that differs by menopausal status, and suggest that the same loci encode genes that influence general obesity (BMI) and HC, specifically, among pre-menopausal women. However, lower heritability among pre-menopausal women for WC and WHR suggests that pre-menopausal waist girth may be influenced to a greater extent by controllable environmental factors than post-menopausal waist girth. Possibly, targeted interventions for weight control among pre-menopausal women may prevent or attenuate post-menopausal abdominal weight deposition.</p

    The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs

    Get PDF
    Drug transporters are recognized as key players in the processes of drug absorption, distribution, metabolism, and elimination. The localization of uptake and efflux transporters in organs responsible for drug biotransformation and excretion gives transporter proteins a unique gatekeeper function in controlling drug access to metabolizing enzymes and excretory pathways. This review seeks to discuss the influence intestinal and hepatic drug transporters have on pharmacokinetic parameters, including bioavailability, exposure, clearance, volume of distribution, and half-life, for orally dosed drugs. This review also describes in detail the Biopharmaceutics Drug Disposition Classification System (BDDCS) and explains how many of the effects drug transporters exert on oral drug pharmacokinetic parameters can be predicted by this classification scheme
    corecore