203 research outputs found

    Metabolic and Behavioral Compensations in Response to Caloric Restriction: Implications for the Maintenance of Weight Loss

    Get PDF
    BackgroundMetabolic and behavioral adaptations to caloric restriction (CR) in free-living conditions have not yet been objectively measured.Methodology and principal findingsForty-eight (36.8+/-1.0 y), overweight (BMI 27.8+/-0.7 kg/m(2)) participants were randomized to four groups for 6-months;Controlenergy intake at 100% of energy requirements; CR: 25% calorie restriction; CR+EX: 12.5% CR plus 12.5% increase in energy expenditure by structured exercise; LCD: low calorie diet (890 kcal/d) until 15% weight reduction followed by weight maintenance. Body composition (DXA) and total daily energy expenditure (TDEE) over 14-days by doubly labeled water (DLW) and activity related energy activity (AREE) were measured after 3 (M3) and 6 (M6) months of intervention. Weight changes at M6 were -1.0+/-1.1% (CONTROL), -10.4+/-0.9% (CR), -10.0+/-0.8% (CR+EX) and -13.9+/-0.8% (LCD). At M3, absolute TDEE was significantly reduced in CR (-454+/-76 kcal/d) and LCD (-633+/-66 kcal/d) but not in CR+EX or controls. At M6 the reduction in TDEE remained lower than baseline in CR (-316+/-118 kcal/d) and LCD (-389+/-124 kcal/d) but reached significance only when CR and LCD were combined (-351+/-83 kcal/d). In response to caloric restriction (CR/LCD combined), TDEE adjusted for body composition, was significantly lower by -431+/-51 and -240+/-83 kcal/d at M3 and M6, respectively, indicating a metabolic adaptation. Likewise, physical activity (TDEE adjusted for sleeping metabolic rate) was significantly reduced from baseline at both time points. For control and CR+EX, adjusted TDEE (body composition or sleeping metabolic rate) was not changed at either M3 or M6.ConclusionsFor the first time we show that in free-living conditions, CR results in a metabolic adaptation and a behavioral adaptation with decreased physical activity levels. These data also suggest potential mechanisms by which CR causes large inter-individual variability in the rates of weight loss and how exercise may influence weight loss and weight loss maintenance.Trial registrationClinicalTrials.gov NCT00099151.Leanne M. Redman, Leonie K. Heilbronn, Corby K. Martin, Lilian de Jonge, Donald A. Williamson, James P. Delany, Eric Ravussin, for the Pennington CALERIE tea

    Sexual Dimorphic Regulation of Body Weight Dynamics and Adipose Tissue Lipolysis

    Get PDF
    BACKGROUND: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism. Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-dynamics (gain-loss-regain). RESEARCH DESIGN: Obesity was induced in C57BL/6J male (m) and female (f) mice by 15 weeks high-fat diet (HFD) feeding. Subsequently BW was reduced (-20%) by caloric restriction (CR) followed by adaptive feeding, and a regain-phase. Measurement of EE, body composition, blood/organ sampling were performed after each feeding period. Lipolysis was analyzed ex-vivo in gonadal AT. RESULTS: Male mice exhibited accelerated BW-gain compared to females (relative BW-gain m:140.5±3.2%; f:103.7±6.5%; p<0.001). In consonance, lean mass-specific EE was significantly higher in females compared to males during BW-gain. Under CR female mice reached their target-BW significantly faster than male mice (m:12.2 days; f:7.6 days; p<0.001) accompanied by a sustained sex-difference in EE. In addition, female mice predominantly downsized gonadal AT whereas the relation between gonadal and total body fat was not altered in males. Accordingly, only females exhibited an increased rate of forskolin-stimulated lipolysis in AT associated with significantly higher glycerol concentrations, lower RER-values, and increased AT expression of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Analysis of AT lipolysis in estrogen receptor alpha (ERα)-deficient mice revealed a reduced lipolytic rate in the absence of ERα exclusively in females. Finally, re-feeding caused BW-regain faster in males than in females. CONCLUSION: The present study shows sex-specific dynamics during BW-gain-loss-regain. Female mice responded to CR with an increase in lipolytic activity, and augmented lipid-oxidation leading to more efficient weight loss. These processes likely involve ERα-dependent signaling in AT and sexual dimorphic regulation of genes involved in lipid metabolism

    Oncological outcome after free jejunal flap reconstruction for carcinoma of the hypopharynx

    Get PDF
    It has been a common practice among the oncologist to reduce the dosage of adjuvant radiotherapy for patients after free jejunal flap reconstruction. The current aims to study potential risk of radiation to the visceral flap and the subsequent oncological outcome. Between 1996 and 2010, consecutive patients with carcinoma of the hypopharynx requiring laryngectomy, circumferential pharyngectomy and post-operative irradiation were recruited. Ninety-six patients were recruited. TNM tumor staging at presentation was: stage II (40.6%), stage III (34.4%) and stage IV (25.0%). Median follow-up period after surgery was 68 months. After tumor ablation, reconstruction was performed using free jejunal flap (60.4%), pectoralis major myocutaneous (PM) flap (31.3%) and free anterolateral thigh (ALT) flap (8.3%). All patients underwent adjuvant radiotherapy within 6.4 weeks after surgery. The mean total dose of radiation given to those receiving cutaneous and jejunal flap reconstruction was 62.2 Gy and 54.8 Gy, respectively. There was no secondary ischaemia or necrosis of the flaps after radiotherapy. The 5-year actuarial loco-regional tumor control for the cutaneous flap and jejunal flap group was: stage II (61 vs. 69%, p = 0.9), stage III (36 vs. 46%, p = 0.2) and stage IV (32 vs. 14%, p = 0.04), respectively. Reduction of radiation dosage in free jejunal group adversely affects the oncological control in stage IV hypopharyngeal carcinoma. In such circumstances, tubed cutaneous flaps are the preferred reconstructive option, so that full-dose radiotherapy can be given

    Neonatal Astrocyte Damage Is Sufficient to Trigger Progressive Striatal Degeneration in a Rat Model of Glutaric Acidemia-I

    Get PDF
    BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I

    Energy expenditure during overfeeding

    Get PDF
    The large inter-individual variation in weight gain during standardized overfeeding together with a weight gain that is often less than theoretically calculated from the energy excess suggest that there are differences between persons in the capacity to regulate energy expenditure and hence metabolic efficiency. Adaptive thermogenesis is defined as the regulated production of heat in response to environmental changes in temperature and diet, resulting in metabolic inefficiency. The question is whether adaptive thermogenesis can be identified in overfeeding experiments. From the numerous human overfeeding experiments we selected those studies that applied suitable protocols and measurement techniques. Five studies claimed to have found evidence for adaptive thermogenesis based on weight gains smaller than expected or unaccounted increases in thermogenesis above obligatory costs. Results from the other 11 studies suggest there is no adaptive thermogenesis as weight gains were proportional to the amount of overfeeding and the increased thermogenesis was associated with theoretical costs of an increased body size and a larger food intake. These results show that in humans, evidence for adaptive thermogenesis is still inconsistent. However, they do not rule out the existence, but emphasize that if present, adaptive changes in energy expenditure may be too small to measure considering measurement errors, errors in assumptions made and small (day-to-day) differences in physical activity. In addition, it is not clear in which component or components of total energy expenditure adaptive changes can occur and whether components can overlap due to measurement limitations

    Validity of Resting Energy Expenditure Predictive Equations before and after an Energy-Restricted Diet Intervention in Obese Women

    Get PDF
    Background We investigated the validity of REE predictive equations before and after 12-week energy-restricted diet intervention in Spanish obese (30 kg/m2>BMI<40 kg/m2) women. Methods We measured REE (indirect calorimetry), body weight, height, and fat mass (FM) and fat free mass (FFM, dual X-ray absorptiometry) in 86 obese Caucasian premenopausal women aged 36.7±7.2 y, before and after (n = 78 women) the intervention. We investigated the accuracy of ten REE predictive equations using weight, height, age, FFM and FM. Results At baseline, the most accurate equation was the Mifflin et al. (Am J Clin Nutr 1990; 51: 241–247) when using weight (bias:−0.2%, P = 0.982), 74% of accurate predictions. This level of accuracy was not reached after the diet intervention (24% accurate prediction). After the intervention, the lowest bias was found with the Owen et al. (Am J Clin Nutr 1986; 44: 1–19) equation when using weight (bias:−1.7%, P = 0.044), 81% accurate prediction, yet it provided 53% accurate predictions at baseline. Conclusions There is a wide variation in the accuracy of REE predictive equations before and after weight loss in non-morbid obese women. The results acquire especial relevance in the context of the challenging weight regain phenomenon for the overweight/obese population.The present study was supported by the University of the Basque Country (UPV 05/80), Social Foundation of the Caja Vital- Kutxa and by the Department of Health of the Government of the Basque Country (2008/111062), and by the Spanish Ministry of Science and Innovation (RYC-2010-05957)

    The dynamics of human body weight change

    Get PDF
    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that the long-term dynamics of human weight change can be captured by a mathematical model of the macronutrient flux balances and all previous models are special cases of this model. We show that the generic dynamical behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes and existing data are insufficient to distinguish between these two possibilities. However, this distinction is important for the efficacy of clinical interventions that alter body composition and mass

    Influences of obese (ob/ob) and diabetes (db/db) genotype mutations on lumber vertebral radiological and morphometric indices: Skeletal deformation associated with dysregulated systemic glucometabolism

    Get PDF
    BACKGROUND: Both diabetes and obesity syndromes are recognized to promote lumbar vertebral instability, premature osteodegeneration, exacerbate progressive osteoporosis and increase the propensity towards vertebral degeneration, instability and deformation in humans. METHODS: The influences of single-gene missense mutations, expressing either diabetes (db/db) or obese (ob/ob) metabolic syndromes on vertebral maturation and development in C57BL/KsJ mice were evaluated by radiological and macro-morphometric analysis of the resulting variances in osteodevelopment indices relative to control parameters between 8 and 16 weeks of age (syndrome onset @ 4 weeks), and the influences of low-dose 17-B-estradiol therapy on vertebral growth expression evaluated. RESULTS: Associated with the indicative genotypic obesity and hyper-glycemic/-insulinemic states, both db/db and ob/ob mutants demonstrated a significant (P ≤ 0.05) elongation of total lumbar vertebrae column (VC) regional length, and individual lumbar vertebrae (LV1-5) lengths, relative to control VC and LV parameters. In contrast, LV1-5 width indices were suppressed in db/db and ob/ob mutants relative to control LV growth rates. Between 8 and 16 weeks of age, the suppressed LV1-5 width indices were sustained in both genotype mutant groups relative to control osteomaturation rates. The severity of LV1-5 width osteosuppression correlated with the severe systemic hyperglycemic and hypertriglyceridemic conditions sustained in ob/ob and db/db mutants. Low-dose 17-B-estradiol therapy (E2-HRx: 1.0 ug/ 0.1 ml oil s.c/3.5 days), initiated at 4 weeks of age (i.e., initial onset phase of db/db and ob/ob expressions) re-established control LV 1–5 width indices without influencing VC or LV lengths in db/db groups. CONCLUSION: These data demonstrate that the abnormal systemic endometabolic states associated with the expression of db/db and ob/ob genomutation syndromes suppress LV 1–5 width osteomaturation rates, but enhanced development related VC and LV length expression, relative to control indices in a progressive manner similar to recognized human metabolic syndrome conditions. Therapeutic E2 modulation of the hyperglycemic component of diabetes-obesity syndrome protected the regional LV from the mutation-induced osteopenic width-growth suppression. These data suggest that these genotype mutation models may prove valuable for the evaluation of therapeutic methodologies suitable for the treatment of human diabetes- or obesity-influenced, LV degeneration-linked human conditions, which demonstrate amelioration from conventional replacement therapies following diagnosis of systemic syndrome-induced LV osteomaturation-associated deformations

    Long-term effects of an inpatient weight-loss program in obese children and the role of genetic predisposition-rationale and design of the LOGIC-trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of childhood obesity has increased worldwide, which is a serious concern as obesity is associated with many negative immediate and long-term health consequences. Therefore, the treatment of overweight and obesity in children and adolescents is strongly recommended. Inpatient weight-loss programs have shown to be effective particularly regarding short-term weight-loss, whilst little is known both on the long-term effects of this treatment and the determinants of successful weight-loss and subsequent weight maintenance.</p> <p>The purpose of this study is to evaluate the short, middle and long-term effects of an inpatient weight-loss program for children and adolescents and to investigate the likely determinants of weight changes, whereby the primary focus lies on the potential role of differences in polymorphisms of adiposity-relevant genes.</p> <p>Methods/Design</p> <p>The study involves overweight and obese children and adolescents aged 6 to 19 years, who participate in an inpatient weight-loss program for 4 to 6 weeks. It started in 2006 and it is planned to include 1,500 participants by 2013. The intervention focuses on diet, physical activity and behavior therapy. Measurements are taken at the start and the end of the intervention and comprise blood analyses (DNA, lipid and glucose metabolism, adipokines and inflammatory markers), anthropometry (body weight, height and waist circumference), blood pressure, pubertal stage, and exercise capacity. Physical activity, dietary habits, quality of life, and family background are assessed by questionnaires. Follow-up assessments are performed 6 months, 1, 2, 5 and 10 years after the intervention: Children will complete the same questionnaires at all time points and visit their general practitioner for examination of anthropometric parameters, blood pressure and assessment of pubertal stage. At the 5 and 10 year follow-ups, blood parameters and exercise capacity will be additionally measured.</p> <p>Discussion</p> <p>Apart from illustrating the short, middle and long-term effects of an inpatient weight-loss program, this study will contribute to a better understanding of inter-individual differences in the regulation of body weight, taking into account the role of genetic predisposition and lifestyle factors.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01067157">NCT01067157</a>.</p
    corecore