56 research outputs found

    Expert Status and Performance

    Get PDF
    Expert judgements are essential when time and resources are stretched or we face novel dilemmas requiring fast solutions. Good advice can save lives and large sums of money. Typically, experts are defined by their qualifications, track record and experience [1], [2]. The social expectation hypothesis argues that more highly regarded and more experienced experts will give better advice. We asked experts to predict how they will perform, and how their peers will perform, on sets of questions. The results indicate that the way experts regard each other is consistent, but unfortunately, ranks are a poor guide to actual performance. Expert advice will be more accurate if technical decisions routinely use broadly-defined expert groups, structured question protocols and feedback

    A comparison of two methods for expert elicitation in health technology assessments.

    Get PDF
    BACKGROUND: When data needed to inform parameters in decision models are lacking, formal elicitation of expert judgement can be used to characterise parameter uncertainty. Although numerous methods for eliciting expert opinion as probability distributions exist, there is little research to suggest whether one method is more useful than any other method. This study had three objectives: (i) to obtain subjective probability distributions characterising parameter uncertainty in the context of a health technology assessment; (ii) to compare two elicitation methods by eliciting the same parameters in different ways; (iii) to collect subjective preferences of the experts for the different elicitation methods used. METHODS: Twenty-seven clinical experts were invited to participate in an elicitation exercise to inform a published model-based cost-effectiveness analysis of alternative treatments for prostate cancer. Participants were individually asked to express their judgements as probability distributions using two different methods - the histogram and hybrid elicitation methods - presented in a random order. Individual distributions were mathematically aggregated across experts with and without weighting. The resulting combined distributions were used in the probabilistic analysis of the decision model and mean incremental cost-effectiveness ratios and the expected values of perfect information (EVPI) were calculated for each method, and compared with the original cost-effectiveness analysis. Scores on the ease of use of the two methods and the extent to which the probability distributions obtained from each method accurately reflected the expert's opinion were also recorded. RESULTS: Six experts completed the task. Mean ICERs from the probabilistic analysis ranged between £162,600-£175,500 per quality-adjusted life year (QALY) depending on the elicitation and weighting methods used. Compared to having no information, use of expert opinion decreased decision uncertainty: the EVPI value at the £30,000 per QALY threshold decreased by 74-86 % from the original cost-effectiveness analysis. Experts indicated that the histogram method was easier to use, but attributed a perception of more accuracy to the hybrid method. CONCLUSIONS: Inclusion of expert elicitation can decrease decision uncertainty. Here, choice of method did not affect the overall cost-effectiveness conclusions, but researchers intending to use expert elicitation need to be aware of the impact different methods could have.This paper presents independent research funded by the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula

    Bayesian profiling of molecular signatures to predict event times

    Get PDF
    BACKGROUND: It is of particular interest to identify cancer-specific molecular signatures for early diagnosis, monitoring effects of treatment and predicting patient survival time. Molecular information about patients is usually generated from high throughput technologies such as microarray and mass spectrometry. Statistically, we are challenged by the large number of candidates but only a small number of patients in the study, and the right-censored clinical data further complicate the analysis. RESULTS: We present a two-stage procedure to profile molecular signatures for survival outcomes. Firstly, we group closely-related molecular features into linkage clusters, each portraying either similar or opposite functions and playing similar roles in prognosis; secondly, a Bayesian approach is developed to rank the centroids of these linkage clusters and provide a list of the main molecular features closely related to the outcome of interest. A simulation study showed the superior performance of our approach. When it was applied to data on diffuse large B-cell lymphoma (DLBCL), we were able to identify some new candidate signatures for disease prognosis. CONCLUSION: This multivariate approach provides researchers with a more reliable list of molecular features profiled in terms of their prognostic relationship to the event times, and generates dependable information for subsequent identification of prognostic molecular signatures through either biological procedures or further data analysis

    Protein expression in experimental malignant glioma varies over time and is altered by radiotherapy treatment

    Get PDF
    Radiotherapy is one of the mainstays of glioblastoma (GBM) treatment. This study aims to investigate and characterise differences in protein expression patterns in brain tumour tissue following radiotherapy, in order to gain a more detailed understanding of the biological effects. Rat BT4C glioma cells were implanted into the brain of two groups of 12 BDIX-rats. One group received radiotherapy (12 Gy single fraction). Protein expression in normal and tumour brain tissue, collected at four different time points after irradiation, were analysed using surface enhanced laser desorption/ionisation – time of flight – mass spectrometry (SELDI-TOF-MS). Mass spectrometric data were analysed by principal component analysis (PCA) and partial least squares (PLS). Using these multivariate projection methods we detected differences between tumours and normal tissue, radiation treatment-induced changes and temporal effects. 77 peaks whose intensity significantly changed after radiotherapy were discovered. The prompt changes in the protein expression following irradiation might help elucidate biological events induced by radiation. The combination of SELDI-TOF-MS with PCA and PLS seems to be well suited for studying these changes. In a further perspective these findings may prove to be useful in the development of new GBM treatment approaches

    Amyloid-β Inhibits No-cGMP Signaling in a CD36- and CD47-Dependent Manner

    Get PDF
    Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease

    Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

    Get PDF
    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death
    corecore