5 research outputs found

    Conserved and variable correlated mutations in the plant MADS protein network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant MADS domain proteins are involved in a variety of developmental processes for which their ability to form various interactions is a key requisite. However, not much is known about the structure of these proteins or their complexes, whereas such knowledge would be valuable for a better understanding of their function. Here, we analyze those proteins and the complexes they form using a correlated mutation approach in combination with available structural, bioinformatics and experimental data.</p> <p>Results</p> <p>Correlated mutations are affected by several types of noise, which is difficult to disentangle from the real signal. In our analysis of the MADS domain proteins, we apply for the first time a correlated mutation analysis to a family of interacting proteins. This provides a unique way to investigate the amount of signal that is present in correlated mutations because it allows direct comparison of mutations in various family members and assessing their conservation. We show that correlated mutations in general are conserved within the various family members, and if not, the variability at the respective positions is less in the proteins in which the correlated mutation does not occur. Also, intermolecular correlated mutation signals for interacting pairs of proteins display clear overlap with other bioinformatics data, which is not the case for non-interacting protein pairs, an observation which validates the intermolecular correlated mutations. Having validated the correlated mutation results, we apply them to infer the structural organization of the MADS domain proteins.</p> <p>Conclusion</p> <p>Our analysis enables understanding of the structural organization of the MADS domain proteins, including support for predicted helices based on correlated mutation patterns, and evidence for a specific interaction site in those proteins.</p

    Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features

    Get PDF
    Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks within a protein and their interactions. Second, we have investigated how this information can be used to improve methods of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the clusters, which could be the foundation of new prediction toolsThis work was supported by grants from the Spanish Ministry of Science and Innovation and the Argentine Ministry of Science AR2009-0015. BO and DA acknowledge support from the European Regional Development Fund BIO2008-0205. CMB acknowledges support from Consejo Nacional de Investigaciones Científicas y Técnica
    corecore