11 research outputs found

    Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    Get PDF
    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators

    Unfulfilled farmer expectations: the case of the Insect Resistant Maize for Africa (IRMA) project in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maize is the most important staple food in Kenya; any reduction in production and yield therefore often becomes a national food security concern. To address the challenge posed by the maize stem borer, the Insect Resistant Maize for Africa (IRMA) agricultural biotechnology public-private partnership (PPP) project was launched in 1999. There were, however, pre-existing concerns regarding the use of genetic engineering in crop production and skepticism about private sector involvement. The purpose of this case study was to understand the role of trust in the IRMA partnership by identifying the challenges to, and practices for, building trust in the project.</p> <p>Methods</p> <p>Data were collected by conducting face-to-face, semi-structured interviews; reviewing publicly available project documents; and direct observations. The data were analyzed to generate recurring and emergent themes on how trust is understood and built among the partners in the IRMA project and between the project and the community.</p> <p>Results</p> <p>Clear and continued communication with stakeholders is of paramount importance to building trust, especially regarding competition among partners about project management positions; a lack of clarity on ownership of intellectual property rights (IPRs); and the influence of anti-genetic modification (GM) organizations. Awareness creation about IRMA’s anticipated products raised the end users’ expectations, which were unfulfilled due to failure to deliver <it>Bacillus thuringiensis</it> (Bt)-based products, thereby leading to diminished trust between the project and the community.</p> <p>Conclusions</p> <p>Four key issues have been identified from the results of the study. First, the inability to deliver the intended products to the end user diminished stakeholders’ trust and interest in the project. Second, full and honest disclosure of information by partners when entering into project agreements is crucial to ensuring progress in a project. Third, engaging stakeholders and creating awareness immediately at the project’s inception contributes to trust building. Fourth, public sector goodwill combined with private sector technology and skills are necessary for a successful partnership. These findings may serve as a useful guide for building and fostering trust among partners in other agbiotech PPPs in sub-Saharan Africa.</p

    Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis

    Get PDF
    Abstract The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism
    corecore