133 research outputs found

    Predictors of linkage to care following community-based HIV counseling and testing in rural Kenya

    Get PDF
    Despite innovations in HIV counseling and testing (HCT), important gaps remain in understanding linkage to care. We followed a cohort diagnosed with HIV through a community-based HCT campaign that trained persons living with HIV/AIDS (PLHA) as navigators. Individual, interpersonal, and institutional predictors of linkage were assessed using survival analysis of self-reported time to enrollment. Of 483 persons consenting to follow-up, 305 (63.2%) enrolled in HIV care within 3 months. Proportions linking to care were similar across sexes, barring a sub-sample of men aged 18–25 years who were highly unlikely to enroll. Men were more likely to enroll if they had disclosed to their spouse, and women if they had disclosed to family. Women who anticipated violence or relationship breakup were less likely to link to care. Enrolment rates were significantly higher among participants receiving a PLHA visit, suggesting that a navigator approach may improve linkage from community-based HCT campaigns.Vestergaard Frandse

    The entangled triplet pair state in acene and heteroacene materials

    Get PDF
    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.The authors thank the G8 Research Councils Initiative on Multilateral Research Funding (EPSRC EP/K025651; US National Science Foundation CMM1-1255494; Japanese Society for the Promotion of Science), JC thanks the University of Sheffield for a VC fellowship. AJM and SLB thank EPSRC (EP/M01083X and EP/M025330). The work in Mons is supported by BELSPO through the PAI P6/27 Functional Supramolecular Systems project and by the Belgian National Fund for Scientific Research FNRS/F.R.S. DB is a Research Director of FNRS

    Low Level of Low-Density Lipoprotein Receptor-Related Protein 1 Predicts an Unfavorable Prognosis of Hepatocellular Carcinoma after Curative Resection

    Get PDF
    BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC). METHODS: LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specific chaperone, receptor-associated protein (RAP), the role of LRP1 in the migration and invasion of HCC cells was assessed in vivo and in vitro, and the expression of matrix metalloproteinase (MMP) 9 in cells and the bioactivity of MMP9 in the supernatant were assayed. The expression and prognostic value of LRP1 were investigated in 327 HCC specimens. RESULTS: Low LRP1 expression was associated with poor HCC prognosis, with low expression independently related to shortened overall survival and increased tumor recurrence rate. Expression of LRP1 in non-recurrent HCC samples was significantly higher than that in early recurrent samples. LRP1 expression in HCC cell lines was inversely correlated with their metastatic potential. After inhibition of LRP1, low-metastatic SMCC-7721 cells showed enhanced migration and invasion and increased expression and bioactivity of MMP9. Correlation analysis showed a negative correlation between LRP1 and MMP9 expression in HCC patients. The prognostic value of LRP1 expression was validated in the independent data set. CONCLUSIONS: LRP1 modulated the level of MMP9 and low level of LRP1 expression was associated with aggressiveness and invasiveness in HCCs. LRP1 offered a possible strategy for tumor molecular therapy

    Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56bright NKG2A+++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content.

    Get PDF
    Mutations of the recombinase Activating Genes 1 and 2 (RAG1, RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment, however high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag-/- NK cells have a mature phenotype, reduced fitness and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16-/int CD57- cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11Ξ± and PSD-95, affected synapse and dendritic spine formation. X11Ξ± decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11Ξ± and PSD-95

    Spatial memory in the grey mouse lemur (Microcebus murinus)

    Get PDF
    Wild animals face the challenge of locating feeding sites distributed across broad spatial and temporal scales. Spatial memory allows animals to find a goal, such as a productive feeding patch, even when there are no goal-specific sensory cues available. Because there is little experimental information on learning and memory capabilities in free-ranging primates, the aim of this study was to test whether grey mouse lemurs (Microcebus murinus), as short-term dietary specialists, rely on spatial memory in relocating productive feeding sites. In addition, we asked what kind of spatial representation might underlie their orientation in their natural environment. Using an experimental approach, we set eight radio-collared grey mouse lemurs a memory task by confronting them with two different spatial patterns of baited and non-baited artificial feeding stations under exclusion of sensory cues. Positional data were recorded by focal animal observations within a grid system of small foot trails. A change in the baiting pattern revealed that grey mouse lemurs primarily used spatial cues to relocate baited feeding stations and that they were able to rapidly learn a new spatial arrangement. Spatially concentrated, non-random movements revealed preliminary evidence for a route-based restriction in mouse lemur space; during a subsequent release experiment, however, we found high travel efficiency in directed movements. We therefore propose that mouse lemur spatial memory is based on some kind of mental representation that is more detailed than a route-based network map

    LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways

    Get PDF
    Background: The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion

    Establishment of epigenetic patterns in development

    Get PDF
    The distinct cell types of the body are established from the fertilized egg in development and assembled into functional tissues. Functional characteristics and gene expression patterns are then faithfully maintained in somatic cell lineages over a lifetime. On the molecular level, transcription factors initiate lineage-specific gene expression programmmes and epigenetic regulation contributes to stabilization of expression patterns. Epigenetic mechanisms are essential for maintaining stable cell identities and their disruption can lead to disease or cellular transformation. Here, we discuss the role of epigenetic regulation in the early mouse embryo, which presents a relatively well-understood system. A number of studies have contributed to the understanding of the function of Polycomb group complexes and the DNA methylation system. The role of many other chromatin regulators in development remains largely unexplored. Albeit the current picture remains incomplete, the view emerges that multiple epigenetic mechanisms cooperate for repressing critical developmental regulators. Some chromatin modifications appear to act in parallel and others might repress the same gene at a different stage of cell differentiation. Studies in pluripotent mouse embryonic stem cells show that epigenetic mechanisms function to repress lineage specific gene expression and prevent extraembryonic differentiation. Insights into this epigenetic β€œmemory” of the first lineage decisions help to provide a better understanding of the function of epigenetic regulation in adult stem cell differentiation

    In search of tools for the use of Country-Image (CI) in the brand

    Get PDF
    Existing country image (CI) literature tends to focus on consumer behaviour. In contrast, this paper approaches CI from the point of view of the firm. In doing so, it seeks to identify the means by which international companies associate a brand with a specific country of origin in order to build brand values. In particular, it looks at the use of CI cues in brand strategies. The paper is based on exploratory research comprising a case study of two contrasting companies from the cosmetics industry, Natura, a domestic company, and the French-owned L’Occitane, both of which draw on images of Brazil to build their brands. Specific elements of CI used in branding are identified, and the extent to which the use of these differs depending on the origin of the owning company is explored. The cases suggest that CI can be exploited in different contexts. Through analysis of the elements used by both companies to build strong brands associated with the Brazilian CIβ€”Natura CosmΓ©ticos and L’Occitane au BrΓ©silβ€”six tools are identified that can be combined by firms to deliver brand values, derived from any country, through the use of CI

    Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells

    Get PDF
    The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pin-type perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V) of the complete cell to ~1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V (1.17 V) and record fill factor (>81%)
    • …
    corecore