193 research outputs found

    A statistical strategy to identify recombinant viral ribonucleoprotein of avian, human, and swine influenza A viruses with elevated polymerase activity

    Get PDF
    Objectives: Reassortment of influenza A viruses can give rise to viral ribonucleoproteins (vRNPs) with elevated polymerase activity and the previous three pandemic influenza viruses contained reassorted vRNPs of different origins. These suggest that reassorted vRNP may be one of the factors leading to a pandemic virus. In this study, we reconstituted chimeric vRNPs with three different viral strains isolated from avian, human and swine hosts. We applied a statistical strategy to identify the effect that the origin of a single vRNP protein subunit or the interactions between these subunits on polymerase activity. Design: Eighty one chimeric vRNPs were reconstituted in 293T cells at different temperatures. Polymerase activity was determined by luciferase reporter assay and the results were analysed by multiway anova and other statistical methods. Results: It was found that PB2, PB1, NP, PB2-PB1 interaction, PB2-PA interaction and PB1-NP interaction had significant effect on polymerase activity at 37°C and several single subunits and interactions were identified to lead to elevation of polymerase activity. Furthermore, we studied 27 out of these 81 different chimieric vRNPs in different combinations via fractional factorial design approach. Our results suggested that the approach can identify the major single subunit or interaction factors that affect the polymerase activity without the need to experimentally reproduce all possible vRNP combinations. Conclusions: Statistical approach and fractional factorial design are useful to identify the major single subunit or interaction factors that can modulate viral polymerase activity. © 2013 John Wiley & Sons Ltd.published_or_final_versio

    Longitudinal study of middle east respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015

    Get PDF
    Two herds of dromedary camels were longitudinally sampled with nasal and rectal swabs and serum, between September 2014 and May 2015, and the samples were tested for Middle East Respiratory Syndrome (MERS) coronavirus RNA and antibodies. Evidence of MERS-CoV infection was confirmed in one herd on the basis of detection of virus RNA in nasal swabs from three camels and significant increases in the antibody titers from three others. The three viruses were genetically identical, thus indicating introduction of a single virus into this herd. There was evidence of reinfection of camels that were previously seropositive, thus suggesting that prior infection does not provide complete immunity from reinfection, a finding that is relevant to camel vaccination strategies as a means to prevent zoonotic transmission.published_or_final_versio

    Possible Role of Songbirds and Parakeets in Transmission of Influenza A(H7N9) Virus to Humans.

    Get PDF
    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds’ potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus. Download MP3  Length: 1:2

    Influenza A Virus Migration and Persistence in North American Wild Birds

    Get PDF
    Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection. © 2013 Bahl et al

    Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck

    Get PDF
    Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness.published_or_final_versio

    MERS coronaviruses in dromedary camels, Egypt

    Get PDF

    Safety, Humoral and Cell Mediated Immune Responses to Two Formulations of an Inactivated, Split-Virion Influenza A/H5N1 Vaccine in Children

    Get PDF
    BACKGROUND:Highly pathogenic influenza A/H5N1 has caused outbreaks in wild birds and poultry in Asia, Africa and Europe. It has also infected people, especially children, causing severe illness and death. Although the virus shows limited ability to transmit between humans, A/H5N1 represents a potential source of the next influenza pandemic. This study assesses the safety and immunogenicity of aluminium hydroxide adjuvanted (Al) and non adjuvanted influenza A/Vietnam/1194/2004 NIBRG-14 (H5N1) vaccine in children. METHODS AND FINDINGS:In a Phase II, open, randomised, multicentre trial 180 children aged 6 months to 17 years received two injections, 21 days apart, of vaccine containing either: 30 microg haemagglutinin (HA) with adjuvant (30 microg+Al) or 7.5 microg HA without adjuvant. An additional 60 children aged 6-35 months received two "half dose" injections (ie 15 microg+Al or 3.8 microg). Safety was followed for 21 days after vaccination. Antibody responses were assessed 21 days after each injection and cellular immune responses were explored. Vaccination appeared well tolerated in all age groups. The 30 microg+Al formulation was more immunogenic than 7.5 microg in all age groups: in these two groups 79% and 46% had haemagglutinination inhibition antibody titres > or =32 (1/dil). Among 6-35 month-olds, the full doses were more immunogenic than their half dose equivalents. Vaccination induced a predominantly Th2 response against H5 HA. CONCLUSIONS:This influenza A(H5N1) vaccine was well tolerated and immunogenic in children and infants, with Al adjuvant providing a clear immunogenic advantage. These results demonstrate that an H5N1 Al-adjuvanted vaccine, previously shown to be immunogenic and safe in adults, can also be used in children, the group most at risk for pandemic influenza

    Comparison of the novel ResPlex III assay and existing techniques for the detection and subtyping of influenza virus during the influenza season 2006–2007

    Get PDF
    Influenza virus is a major cause of disease worldwide. The accurate detection and further subtyping of influenza A viruses are important for epidemiologic surveillance, and subsequent comprehensive characterization of circulating influenza viruses is essential for the selection of an optimal vaccine composition. ResPlex III is a new multiplex reverse transcriptase polymerase chain reaction (RT-PCR)-based method for detecting, typing, and subtyping influenza virus in clinical specimens. The ResPlex III assay was compared with other methods with respect to sensitivity and accuracy, using 450 clinical specimens obtained from subjects throughout Germany during the 2006–2007 influenza season. Samples were analyzed for the presence of influenza virus in Madin-Darby canine kidney (MDCK) cells by rapid cell culture using peroxidase staining and conventional cell culture confirmed by hemagglutination inhibition assay, a rapid diagnostic assay (Directigen Flu A+B test; BD Diagnostic Systems, Heidelberg, Germany), in-house real-time RT-PCR (RRT-PCR), and ResPlex III (Qiagen, Hilden, Germany). ResPlex III had the highest sensitivity for detecting influenza virus in clinical specimens, followed by in-house RRT-PCR (96% compared with ResPlex III). Conventional cell culture in MDCK cells, rapid culture, and quick test assays were substantially less sensitive (55%, 72%, and 39%, respectively). Virus subtyping results were identical using ResPlex III and the standard virological subtyping method, hemagglutination inhibition. ResPlex III is a quick, accurate, and sensitive assay for detecting and typing influenza A and B viruses and subtyping influenza A viruses in clinical specimens, and might be considered for a supplemental role in worldwide seasonal and pandemic influenza surveillance

    Hospital-based, prospective, multicentre surveillance to determine the incidence of intussusception in children aged below 15 years in Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A new vaccine against Rotavirus (RV) gastroenteritis was introduced in Germany in 2006. In 1997 the first RV vaccine was withdrawn due to an increased incidence in intussusception (IS). Thus, an accurate estimation of the incidence of IS is important for post-licensure surveillance.</p> <p>Methods</p> <p>IS-Data were obtained from the 'Erhebungseinheit für seltene pädiatrische Erkrankungen Deutschland' (ESPED, German surveillance unit for rare pediatric diseases) collaborations' central register where all cases of intussusception in Germany for the years 2006 and 2007 are collected (n = 1200). In order to obtain an unbiased estimate of the incidence, it is necessary to determine the population under risk out of which these cases originated, and the proportion of real cases not reported to the registry (underreporting). In order to assess underreporting, a random sample of 31 hospitals was re-assessed by an outside reviewer. The estimation of incidence was done using a single Maximum-Likelihood (ML) estimator based on data from both the registry and the sample.</p> <p>Results</p> <p>The uncorrected observed incidence was calculated to be 26.6/100,000 child-years for children below 1 year old, 23.8 for those below 2 years old, and 5.2 for those below 15 years old. The review revealed a mean reporting quota of about 41% and the ML approach yielded an incidence of 51.5/100,000 child-years (95%CI [41.7;61.1]) for children below 2 years of age.</p> <p>Conclusions</p> <p>While substantial under-reporting led to very conservative estimates of the IS incidence, the approach described here allows an accurate estimation of IS incidence including corresponding confidence bands. Therefore, ML estimation is a straightforward instrument to derive stable, unbiased estimates in epidemiological studies with incomplete data.</p
    corecore