180 research outputs found

    Spontaneous dural tear leading to intracranial hypotension and tonsillar herniation in Marfan syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe the case of a 38 year old male with Marfan syndrome who presented with orthostatic headaches and seizures.</p> <p>Case Presentation</p> <p>The patient was diagnosed with Spontaneous Intracranial Hypotension secondary to CSF leaks, objectively demonstrated by MR Myelogram with intrathecal contrast. Epidural autologus blood patch was administered at the leakage site leading to significant improvement.</p> <p>Conclusion</p> <p>Our literature search shows that this is the second reported case of a Marfan patient presenting with symptomatic spontaneous CSF leaks along with tonsillar herniation.</p

    A p53-Dependent Response Limits Epidermal Stem Cell Functionality and Organismal Size in Mice with Short Telomeres

    Get PDF
    Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing), are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC) of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness

    Expression of Kruppel-Like Factor KLF4 in Mouse Hair Follicle Stem Cells Contributes to Cutaneous Wound Healing

    Get PDF
    Kruppel-like factor KLF4 is a transcription factor critical for the establishment of the barrier function of the skin. Its function in stem cell biology has been recently recognized. Previous studies have revealed that hair follicle stem cells contribute to cutaneous wound healing. However, expression of KLF4 in hair follicle stem cells and the importance of such expression in cutaneous wound healing have not been investigated.Quantitative real time polymerase chain reaction (RT-PCR) analysis showed higher KLF4 expression in hair follicle stem cell-enriched mouse skin keratinocytes than that in control keratinocytes. We generated KLF4 promoter-driven enhanced green fluorescence protein (KLF4/EGFP) transgenic mice and tamoxifen-inducible KLF4 knockout mice by crossing KLF4 promoter-driven Cre recombinase fused with tamoxifen-inducible estrogen receptor (KLF4/CreERâ„¢) transgenic mice with KLF4(flox) mice. KLF4/EGFP cells purified from dorsal skin keratinocytes of KLF4/EGFP transgenic mice were co-localized with 5-bromo-2'-deoxyuridine (BrdU)-label retaining cells by flow cytometric analysis and immunohistochemistry. Lineage tracing was performed in the context of cutaneous wound healing, using KLF4/CreERâ„¢ and Rosa26RLacZ double transgenic mice, to examine the involvement of KLF4 in wound healing. We found that KLF4 expressing cells were likely derived from bulge stem cells. In addition, KLF4 expressing multipotent cells migrated to the wound and contributed to the wound healing. After knocking out KLF4 by tamoxifen induction of KLF4/CreERâ„¢ and KLF4(flox) double transgenic mice, we found that the population of bulge stem cell-enriched population was decreased, which was accompanied by significantly delayed cutaneous wound healing. Consistently, KLF4 knockdown by KLF4-specific small hairpin RNA in human A431 epidermoid carcinoma cells decreased the stem cell population and was accompanied by compromised cell migration.KLF4 expression in mouse hair bulge stem cells plays an important role in cutaneous wound healing. These findings may enable future development of KLF4-based therapeutic strategies aimed at accelerating cutaneous wound closure

    The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data

    Get PDF
    Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions

    Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence

    Get PDF
    Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures

    A genome scan for milk production traits in dairy goats reveals two new mutations in <i>Dgat1</i> reducing milk fat content

    Get PDF
    The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program

    Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy

    Get PDF
    Background. Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage. Methodology/Principal Findings. In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a ‘‘two-hit’ ’ mechanism in the pathogenesis of this disease. Conclusions/Significance. Evidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the ‘‘two-hit’ ’ mechanism in this disease was documented. Significantly, the vasoactive dru

    Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens

    Get PDF
    Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further

    Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

    Get PDF
    Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.National Institutes of Health (U.S.)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (NIAMS) (K08-AR054615))National Cancer Institute (U.S.) (NIH/(NCI) (R01-CA118750))National Cancer Institute (U.S.) (NIH/(NCI) R01-CA130795))Juvenile Diabetes Research Foundation InternationalAmerican Cancer SocietyHoward Hughes Medical Institute (Early career scientist)Stanford University (Graduate Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship

    The ERCC6 Gene and Age-Related Macular Degeneration

    Get PDF
    Background: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the developed countries and is caused by both environmental and genetic factors. A recent study (Tuo et al., PNAS) reported an association between AMD and a single nucleotide polymorphism (SNP) (rs3793784) in the ERCC6 (NM_000124) gene. The risk allele also increased ERCC6 expression. ERCC6 is involved in DNA repair and mutations in ERCC6 cause Cockayne syndrome (CS). Amongst others, photosensitivity and pigmentary retinopathy are hallmarks of CS. Methodology/Principal Findings: Separate and combined data from three large AMD case-control studies and a prospective population-based study (The Rotterdam Study) were used to analyse the genetic association between ERCC6 and AMD (2682 AMD cases and 3152 controls). We also measured ERCC6 mRNA levels in retinal pigment epithelium (RPE) cells of healthy and early AMD affected human donor eyes. Rs3793784 conferred a small increase in risk for late AMD in the Dutch population (The Rotterdam and AMRO-NL study), but this was not replicated in two non-European studies (AREDS, Columbia University). In addition, the AMRO-NL study revealed no significant association for 9 other variants spanning ERCC6. Finally, we determined that ERCC6 expression in the human RPE did not depend on rs3793784 genotype, but, interestingly, on AMD status: Early AMD-affected donor eyes had a 50% lower ERCC6 expression than healthy donor eyes (P = 0.018). Conclusions/Significance: Our meta analysis of four Caucasian cohorts does not replicate the reported association between SNPs in ERCC6 and AMD. Nevertheless, our findings on ERCC6 expression in the RPE suggest that ERCC6 may be functionally involved in AMD. Combining our data with those of the literature, we hypothesize that the AMD-related reduced transcriptional activity of ERCC6 may be caused by diverse, small and heterogeneous genetic and/or environmental determinants
    • …
    corecore