871 research outputs found

    Using a formative simulated patient exercise for curriculum evaluation

    Get PDF
    BACKGROUND: It is not clear that teaching specific history taking, physical examination and patient teaching techniques to medical students results in durable behavioural changes. We used a quasi-experimental design that approximated a randomized double blinded trial to examine whether a Participatory Decision-Making (PDM) educational module taught in a clerkship improves performance on a Simulated Patient Exercise (SPE) in another clerkship, and how this is influenced by the time between training and assessment. METHODS: Third year medical students in an internal medicine clerkship were assessed on their use of PDM skills in an SPE conducted in the second week of the clerkship. The rotational structure of the third year clerkships formed a pseudo-randomized design where students had 1) completed the family practice clerkship containing a training module on PDM skills approximately four weeks prior to the SPE, 2) completed the family medicine clerkship and the training module approximately 12 weeks prior to the SPE or 3) had not completed the family medicine clerkship and the PDM training module at the time they were assessed via the SPE. RESULTS: Based on limited pilot data there were statistically significant differences between students who received PDM training approximately four weeks prior to the SPE and students who received training approximately 12 weeks prior to the SPE. Students who received training 12 weeks prior to the SPE performed better than those who received training four weeks prior to the SPE. In a second comparison students who received training four weeks prior to the SPE performed better than those who did not receive training but the differences narrowly missed statistical significance (P < 0.05). CONCLUSION: This pilot study demonstrated the feasibility of a methodology for conducting rigorous curricular evaluations using natural experiments based on the structure of clinical rotations. In addition, it provided preliminary data suggesting targeted educational interventions can result in marked improvements in the clinical skills spontaneously exhibited by physician trainees in a setting different from which the skills were taught

    Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner.

    Get PDF
    Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value

    Prognostic significance of immunohistochemically detected breast cancer node metastases in 218 patients

    Get PDF
    Axillary lymph node metastases detected by immunohistochemistry in standard node-negative patients with breast carcinomas (13 out of 129 infiltrating ductal carcinomas and 37 out of 89 infiltrating lobular carcinomas) do not have any prognostic significance in patients followed up for a long time (respectively 24 and 18 years). Moreover, their pejorative significance in the literature is debatable since the groups and events taken into account are heterogeneous

    An early warning method for agricultural products price spike based on artificial neural networks prediction

    Get PDF
    In general, the agricultural producing sector is affected by the diversity in supply, mostly from small companies, in addition to the rigidity of the demand, the territorial dispersion, the seasonality or the generation of employment related to the rural environment. These characteristics differentiate the agricultural sector from other economic sectors. On the other hand, the volatility of prices payed by producers, the high cost of raw materials, and the instability of both domestic and international markets are factors which have eroded the competitiveness and profitability of the agricultural sector. Because of the advance in technology, applications have been developed based on Artificial Neural Networks (ANN) which have helped the development of sales forecast on consumer products, improving the accuracy of traditional forecasting systems. This research uses the RNA to develop an early warning system for facing the increase in agricultural products, considering macro and micro economic variables and factors related to the seasons of the year

    Esophageal Granular Cell Tumor and Eosinophilic Esophagitis: Two Interesting Entities Identified in the Same Patient

    Get PDF
    We illustrate the case of a 41-year-old male with allergic manifestations since childhood. He sought medical attention for intermittent, progressive dysphagia from which he had been suffering for a number of years, having felt the sensation of a retrosternal lump and a self-limited obstruction to the passage of food. Endoscopy detected a submucosal tumor in the upper third of the esophagus, which was typified, via biopsy, as a granular cell tumor with benign characteristics and probably responsible for the symptoms. Two years later, the patient sought medical attention once again as these symptoms had not abated, hence digestive endoscopy was repeated. This revealed stenosis of the junction between the middle and lower thirds of the organ which had not been detected previously but was passable under gentle pressure. Eosinophilic esophagitis was detected after biopsies were taken. Esophageal manometry identified a motor disorder affecting the esophageal body. Following three months of treatment using fluticasone propionate applied topically, the symptoms went into remission, esophageal stenosis disappeared and the esophageal biopsies returned to normal. This is the first documented case of the link between granular cell tumors and Eosinophilic esophagitis, two different disorders which could cause dysphagia in young patients

    Management of singlet and triplet excitons for efficient white organic light-emitting devices

    Full text link
    Lighting accounts for approximately 22 per cent of the electricity consumed in buildings in the United States, with 40 per cent of that amount consumed by inefficient (similar to 15 lm W-1) incandescent lamps(1,2). This has generated increased interest in the use of white electroluminescent organic light-emitting devices, owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost, high-throughput manufacturability. The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices, which have the potential for 100 per cent internal quantum efficiency(2): the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound electron-hole pairs that form during charge injection, and which (unlike the remaining singlet excitons) would otherwise recombine non-radiatively. Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant, in combination with green and red phosphor dopants, to yield high power efficiency and stable colour balance, while maintaining the potential for unity internal quantum efficiency. Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant. Additionally, eliminating the exchange energy loss to the blue fluorophore allows for roughly 20 per cent increased power efficiency compared to a fully phosphorescent device. Our device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 +/- 0.5 per cent and 37.6 +/- 0.6 lm W-1, respectively, decreasing to 18.4 +/- 0.5 per cent and 23.8 +/- 0.5 lm W-1 at a high luminance of 500 cd m(-2).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62889/1/nature04645.pd
    corecore