231 research outputs found

    Practice effects on the modified Concept Shifting Task (mCST): A convenient assessment for treatment effects on prefrontal cognitive function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trail-making tests, such as the Concept Shifting Task (CST), can be used to test the effects of treatment on cognitive performance over time in various neuropsychological disorders. However, cognitive performance in such experimental designs might improve as a result of the practice obtained during repeated testing rather than the treatment itself. The current study investigated if practice affects the accuracy and duration of performance on the repeatedly administered Concept Shifting Task modified to make it resistant to practice (mCST). The mCST was administered to 54 healthy participants twice a day, before and after a short break, for eight days. Results. The ANOVA and meta-analysis showed that there was no improvement in the mCST accuracy on the last vs. the first trial (Hedges' <it>g </it>= .14, <it>p </it>= .221) or within the session (after vs. before the break on all days; <it>g </it>= .01, <it>p </it>= .922). However, the participants performed the task faster on the last vs. the first trial (<it>g </it>= -.75, <it>p </it>< .001) and after vs. before the break on all days (<it>g </it>= -.12, <it>p </it>= .002). Conclusions. Repeated administration of the mCST does not affect the accuracy of performance on the test. However, practice might contribute to faster performance on the mCST over time and within each session.</p

    Protective Immunity to Listeria Monocytogenes Infection Mediated by Recombinant Listeria innocua Harboring the VGC Locus

    Get PDF
    In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the production of Type I Interferon's and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination

    The value of spreader grafts in rhinoplasty: a critical review

    Get PDF
    The value of spreader grafts in rhinoplasty cannot be underestimated. Various studies have demonstrated that they play a valuable role in the restoration of nasal dorsum aesthetics, provide support for the nasal valve and maintain the straightened position of the corrected deviated cartilaginous septal dorsum. However, there is still controversy on the extent of its value in nasal patency. This study reviews the literature and describes the values and limitations of spreader grafts in rhinoplasty and the alternatives to classic spreader grafts

    GAMEC – a new intensive protocol for untreated poor prognosis and relapsed or refractory germ cell tumours

    Get PDF
    There is no consensus as to the management of untreated poor prognosis or relapsed/refractory germ cell tumours. We have studied an intensive cisplatin-based regimen that incorporates high-dose methotrexate (HD MTX) and actinomycin-D and etoposide every 14 days (GAMEC). Sixty-two patients were enrolled in a phase 2 study including 27 who were untreated (IGCCCG, poor prognosis) and 35 with progression despite conventional platinum based chemotherapy. The pharmacokinetics of the drugs were correlated with standard outcome measures. Twenty of the untreated patients were progression free following GAMEC and appropriate surgery, as were 18 individuals in the pretreated group. None of the established prognostic factors for therapy for pretreated patients could identify a poor-prognosis group. Five out of nine late relapses to prior chemotherapy were progression free following GAMEC and appropriate surgery. All patients had at least one episode of febrile neutropenia and there were five (8%) treatment-related deaths. PK values were not predictive of efficacy or toxicity, although the dose intensity in the pretreated group of patients, especially of HD MTX, was significantly correlated with progression-free survival (PFS). GAMEC is a novel intensive regimen for this group of patients producing encouraging responses, although with significant toxicity. For those in whom it fails, further therapy is still possible with durable responses being seen

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    The N-Myc Down Regulated Gene1 (NDRG1) Is a Rab4a Effector Involved in Vesicular Recycling of E-Cadherin

    Get PDF
    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein

    Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    Get PDF
    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases

    The RNA Chaperone Hfq Is Important for Growth and Stress Tolerance in Francisella novicida

    Get PDF
    The RNA-binding protein Hfq is recognized as an important regulatory factor in a variety of cellular processes, including stress resistance and pathogenesis. Hfq has been shown in several bacteria to interact with small regulatory RNAs and act as a post-transcriptional regulator of mRNA stability and translation. Here we examined the impact of Hfq on growth, stress tolerance, and gene expression in the intracellular pathogen Francisella novicida. We present evidence of Hfq involvement in the ability of F. novicida to tolerate several cellular stresses, including heat-shock and oxidative stresses, and alterations in hfq gene expression under these conditions. Furthermore, expression of numerous genes, including several associated with virulence, is altered in a hfq mutant strain suggesting they are regulated directly or indirectly by Hfq. Strikingly, we observed a delayed entry into stationary phase and increased biofilm formation in the hfq mutant. Together, these data demonstrate a critical role for Hfq in F. novicida growth and survival

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape
    corecore