556 research outputs found

    Fused eco29kIR- and M genes coding for a fully functional hybrid polypeptide as a model of molecular evolution of restriction-modification systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems.</p> <p>Results</p> <p>Fusion of <it>eco29kIR </it>and <it>M </it>ORFs gave a novel gene encoding for a fully functional hybrid polypeptide that carried both restriction endonuclease and DNA methyltransferase activities. It has been placed into a subclass of type II restriction and modification enzymes - type IIC. Its MTase activity, 80% that of the M.Eco29kI enzyme, remained almost unchanged, while its REase activity decreased by three times, concurrently with changed reaction optima, which presumably can be caused by increased steric hindrance in interaction with the substrate. <it>In vitro </it>the enzyme preferentially cuts DNA, with only a low level of DNA modification detected. <it>In vivo </it>new RMS can provide a 10<sup>2</sup>-fold less protection of host cells against phage invasion.</p> <p>Conclusions</p> <p>We propose a molecular mechanism of appearing of type IIC restriction-modification and M.SsoII-related enzymes, as well as other multifunctional proteins. As shown, gene fusion could play an important role in evolution of restriction-modification systems and be responsible for the enzyme subclass interconversion. Based on the proposed approach, hundreds of new type IIC enzymes can be generated using head-to-tail oriented type I, II, and III restriction and modification genes. These bifunctional polypeptides can serve a basis for enzymes with altered recognition specificities. Lastly, this study demonstrates that protein fusion may change biochemical properties of the involved enzymes, thus giving a starting point for their further evolutionary divergence.</p

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (<it>ANT1</it>), FSHD-related gene 1 (<it>FRG1</it>), <it>FRG2 </it>and <it>DUX4c</it>, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (<it>DUX4</it>) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing <it>FRG1 </it>has been generated, displaying skeletal muscle defects.</p> <p>Results</p> <p>In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and <it>FRG1 </it>gene promoter, and <it>FRG1 </it>expression, in control and FSHD cells. The <it>FRG1 </it>gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of <it>FRG1 </it>expression. Using chromosome conformation capture (3C) technology, we revealed that the <it>FRG1 </it>promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the <it>FRG1</it>/4q-D4Z4 array loop in myotubes. The <it>FRG1 </it>promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation.</p> <p>Conclusion</p> <p>We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of <it>in cis </it>chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.</p

    Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients

    Get PDF
    High-grade osteosarcoma has a poor prognosis with an overall survival rate of about 60 percent. The recently closed European and American Osteosarcoma Study Group (EURAMOS)-1 trial investigates the efficacy of adjuvant chemotherapy with or without interferon-α. It is however unknown whether the interferon-signaling pathways in immune cells of osteosarcoma patients are functional. We studied the molecular and functional effects of interferon treatment on peripheral blood lymphocytes and monocytes of osteosarcoma patients, both in vivo and ex vivo. In contrast to other tumor types, in osteosarcoma, interferon signaling as determined by the phosphorylation of signal transducer and activator of transcription (STAT)1 at residue 701 was intact in immune cell subsets of 33 osteosarcoma patients as compared to 19 healthy controls. Also, cytolytic activity of interferon-α stimulated natural killer cells against allogeneic (n = 7 patients) and autologous target cells (n = 3 patients) was not impaired. Longitudinal monitoring of three osteosarcoma patients on interferon-α monotherapy revealed a relative increase in the CD16-positive subpopulation of monocytes during treatment. Since interferon signaling is intact in immune cells of osteosarcoma patients, there is a potential for indirect immunological effects of interferon-α treatment in osteosarcoma

    XRCC1 gene polymorphisms in a population sample and in women with a family history of breast cancer from Rio de Janeiro (Brazil)

    Get PDF
    The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer. In the present study, we estimated the frequencies of the XRCC1 gene polymorphisms Arg194Trp and Arg399Gln in healthy individuals and also in women at risk of breast cancer due to family history from Rio de Janeiro. The common genotypes in both positions (194 and 399) were the most frequent in this Brazilian sample. Although the 194Trp variant was overrepresented in women reporting familial cases of breast cancer, no statistically significant differences concerning genotype distribution or intragenic interactions were found between this group and the controls. Thus, in the population analyzed by us, variants Arg194Trp and Arg399Gln did not appear to have any impact on breast cancer susceptibility

    XRCC1 gene polymorphisms in a population sample and in women with a family history of breast cancer from Rio de Janeiro (Brazil)

    Get PDF
    The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer. In the present study, we estimated the frequencies of the XRCC1 gene polymorphisms Arg194Trp and Arg399Gln in healthy individuals and also in women at risk of breast cancer due to family history from Rio de Janeiro. The common genotypes in both positions (194 and 399) were the most frequent in this Brazilian sample. Although the 194Trp variant was overrepresented in women reporting familial cases of breast cancer, no statistically significant differences concerning genotype distribution or intragenic interactions were found between this group and the controls. Thus, in the population analyzed by us, variants Arg194Trp and Arg399Gln did not appear to have any impact on breast cancer susceptibility
    corecore