15 research outputs found

    A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    Get PDF
    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins

    Role of Lipids in Spheroidal High Density Lipoproteins

    Get PDF
    We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly

    Conformations of human apolipoprotein E(263-286) and E(267-289) in aqueous solutions of sodium dodecyl sulfate by CD and H-1 NMR

    No full text
    Structures of apoE(263-286) and apoE(267-289) have been determined in aqueous solution containing 90-old molar excess of perdeuterated sodium dodecyl sulfate by CD and H-1 NMR. Conformations were calculated by distance geometry based on 370 and 276 NOE distance restraints, respectively. RMSD for superimposing the region 265-284 from an ensemble of 41 structures for apoE(263-286) (263-286) is 0.64 +/- 0.17 Angstrom for backbone atoms (N, C-alpha, C=O) and 1.51 +/- 0.13 Angstrom for all atoms. The backbone RMSD for an ensemble of 37 structures for apoE(267-289) is 0.74 +/- 0.21 Angstrom for the region 268-275 and 0.34 +/- 0.10 Angstrom for the region 276-286. A two-domain structure was found far apoE(267-289) with the C-terminal half adopting a very well defined helix and the N-terminal segment 268-275 a less well defined helix, suggesting that the N-terminus may weakly bind to SDS. For apoE(263-286), an amphipathic helix-bend-helix structural motif was found with all hydrophobic side chains on the concave face, The existence of a bend around residues Q273 To G278 is consistent with their temperature coefficients of amide protons as well as secondary shifts of alpha-protons. Comparison of the structures of the two peptides revealed that the enhanced binding of apoE(263-286) to lipid could be attributed to the formation of a hydrophobic cluster consisting of residues W264, F265, L268, and V269. Aromatic side chains are proposed to be especially important in anchoring apolipoprotein fragments to micelles

    NMR structural studies of amphipathic helices

    No full text
    corecore