108 research outputs found

    Volume-Targeted Ventilation and Arterial Carbon Dioxide in Neonates

    Get PDF
    Objectives: To review the arterial carbon dioxide tensions (PaCO2) in newborn infants ventilated using synchronized intermittent mandatory ventilation (SIMV) in volume guarantee mode (using the Drager Babylog 8000+) with a unit policy targeting tidal volumes of approximately 4 mL/kg. Methods: Data on ventilator settings and arterial (PaCO2 levels were collected on all arterial blood gases (ABG; n = 288) from 50 neonates ( 65 mmHg) were determined. Results: The mean (SD) (PaCO2 during the first 48 h was 46.6 (9.0) mmHg. The mean (SD) (PaCO2 on the first blood gas of those infants commenced on volume guarantee from admission was 45.1 (12.5) mmHg. Severe hypo- or hypercapnoea occurred in 8% of infants at the time of their first blood gas measurement, and i

    Effects of intrauterine food restriction and long-term dietary supplementation with L-arginine on age-related changes in renal function and structure of rats

    Get PDF
    We have previously demonstrated that restricting intrauterine food by 50% in 3-mo-old rats produced lower nephron numbers and early-onset hypertension, the latter being normalized by L-arginine administration. in 18-mo-old rats, such restriction increased glomerulosclerosis. in this study, we expanded our investigation, evaluating functional, morphologic, and immunohistochemical parameters in intrauterine-food-restricted 18-mo-old rats, either receiving L-arginine (RA18) or not (R18). Age-matched, non-food-restricted controls were assigned to similar groups with L-arginine (CA18) and without (C18). After weaning, L-arginine was given daily for 17 mo. No functional or morphologic changes were observed in C IS rats. the R18 rats developed early-onset hypertension, which persisted throughout the observation period, as well its significant proteinuria from 12 mo on. in RA18 rats, L-arginine decreased both blood pressure levels and proteinuria, and glomerular diameter was si,significantly smaller than in R18 rats (115.63 +/- 2.2 versus 134.8 +/- 1.0 mu m, p < 0.05). However, in RA18 rats, glomerular filtration rate remained depressed. Although L-arginine prevented glomerulosclerosis (R18 = 14%, RA18 = 4%; p < 0.05), glomerular expression of fibronectin and desmin was still greater in RA18 rats than in controls. Our data show that, although L-arginine prevented hypertension and proteinuria, glomerular injury still occurred, suggesting that intrauterine food restriction may be one of the leading causes of impaired renal function in adult life.Universidade Federal de São Paulo, Dept Physiol, EPM, Dept Physiol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Morphol,Embrol Div, BR-04023900 São Paulo, BrazilUniv São Paulo, Ribeirao Preto Sch Med, Dept Physiol & Biophys, Brookline, MA 02146 USAUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Physiol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Morphol,Embrol Div, BR-04023900 São Paulo, BrazilWeb of Scienc

    Complement in glomerular injury

    Get PDF
    In recent years, research into the role of complement in the immunopathogenesis of renal disease has broadened our understanding of the fragile balance between the protective and harmful functions of the complement system. Interventions into the complement system in various models of immune-mediated renal disease have resulted in both favourable and unfavourable effects and will allow us to precisely define the level of the complement cascade at which a therapeutic intervention will result in an optimal effect. The discovery of mutations of complement regulatory molecules has established a role of complement in the haemolytic uremic syndrome and membranoproliferative glomerulonephritis, and genotyping for mutations of the complement system are already leaving the research laboratory and have entered clinical practice. These clinical discoveries have resulted in the creation of relevant animal models which may provide crucial information for the development of highly specific therapeutic agents. Research into the role of complement in proteinuria has helped to understand pathways of inflammation which ultimately lead to renal failure irrespective of the underlying renal disease and is of major importance for the majority of renal patients. Complement science is a highly exciting area of translational research and hopefully will result in meaningful therapeutic advances in the near future

    Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease

    Get PDF
    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease

    Altered glomerular extracellular matrix synthesis in experimental membranous nephropathy.

    Get PDF
    Chronic progressive membranous nephropathy (MN) in humans is characterized by thickening of the glomerular basement membrane (GBM) with formation of spikes which contain laminin and other extracellular matrix (ECM) proteins. We have utilized two models of MN in the rat (active and passive Heymann nephritis, AICN, PHN) to define the sequential changes in composition of GBM as they relate to changes in glomerular gene expression for ECM components, altered permeability and morphological changes. Renal biopsies obtained during the course of AICN and PHN were immunostained for various ECM proteins and total glomerular RNA was hybridized with cDNA probes specific for laminin B2-chain, s-laminin, and types I and IV collagen. In addition, the ability of anti-glomerular epithelial cell (GEC) antibody and complement on rat GEC in culture to induce laminin release or laminin and s-laminin mRNA expression was determined. The results demonstrate that at weeks 12, 16, and 20 of AICN, immunostaining for laminin, s-laminin, fibronectin, entactin, and heparan sulfate proteoglycan increased in the GBM in a spike-like pattern. Concomitantly, glomerular mRNA levels of laminin B2-chain and of s-laminin increased. Type IV collagen protein and gene expression remained unchanged or decreased. No glomerular immunostaining for type I collagen occurred during AICN despite increased expression of mRNA for this collagen type. In contrast to AICN, in PHN no pronounced changes of the glomerular ECM occurred, except for transient expression of type I collagen mRNA in whole glomerular RNA and type I collagen protein the GEC cytoplasm. Stimulation of GEC in culture with anti-GEC antibody and complement also failed to induce transcription of laminin or s-laminin mRNA or the release of laminin protein. These findings suggest that the polyantigenic expansion of GBM which occurs in chronic experimental MN may be stimulated by factors different from the C5b-9 mediated processes that cause the initial proteinuria
    • …
    corecore