105 research outputs found

    Conservative treatment of fractures of the clavicle

    Get PDF
    Background: In the treatment of clavicle fractures, the choice of procedure depends on the possibility of restoring the anatomical functional integrity of the shoulder. Methods: We examined 71 patients (51 males and 20 females, mean age 38.9 years) who were affected by clavicle fracture sequelae. Demographic and clinical data and the site of the lesion were recorded for each partecipant. The dissatisfaction of the patient was determined by the presence of 1 or more affirmative answers on the Simple Shoulder Test. The Constant Shoulder Score was also included in the functional and clinical exams. We measured the length of the healthy clavicle and the previously fractured clavicle, and we expressed the difference in length in mm and in percentage shortening. We then examined the correlations between the shortening of the bone and the clinical and functional outcomes of the patients. Results: Sixty patients had a lesion of the diaphysis, 8 patients had a lesion of the lateral third of the clavicle, and 3 patients had a lesion of the medial third of the clavicle. The mean Constant Shoulder Score was 77.9, and 51 of the 71 patients were satisfied with their treatment. Radiography showed a mean clavicle shortening of 10 mm (mean percentage 6.5%). In the 20 dissatisfied patients, the mean clavicle shortening was 15.2 mm (9.7%). In these patients, we found a highly significant association between dissatisfaction with treatment and the amount of bone shortening, (p < 0.0001), as well as with a diaphyseal location (p < 0.05) and with the female sex (p = 0.004). No other variable related to the patient, the type of treatment or the fracture characteristics correlated with the treatment outcome. Conclusions: In the literature, measurements of the shortening of the bone segment following a fracture range between 15 and 23 mm, and marked shortening is correlated with the failure of conservative treatment. However, these data need to be reinterpreted in light of the physiological variability of the clavicle length, which ranges from 140 to 158 mm in the healthy population. Shortening of the bone by more than 9.7% should be the cut-off for predicting failure of conservative treatment

    A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart

    Get PDF
    Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels

    Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S.

    Get PDF
    Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 90 (2008): 15-27, doi:10.1007/s10533-008-9227-2.Nitrogen from atmospheric deposition serves as the dominant source of new nitrogen to forested ecosystems in the northeastern U.S.. By combining isotopic data obtained using the denitrifier method, with chemistry and hydrology measurements we determined the relative importance of sources and control mechanisms on nitrate (NO3-) export from five forested watersheds in the Connecticut River watershed. Microbially produced NO3- was the dominant source (82-100%) of NO3- to the sampled streams as indicated by the δ15N and δ18O of NO3-. Seasonal variations in the δ18O-NO3- in streamwater are controlled by shifting hydrology and temperature affects on biotic processing, resulting in a relative increase in unprocessed NO3- export during winter months. Mass balance estimates find that the unprocessed atmospherically derived NO3- stream flux represents less than 3% of the atmospherically delivered wet NO3- flux to the region. This suggests that despite chronically elevated nitrogen deposition these forests are not nitrogen saturated and are retaining, removing, and reprocessing the vast majority of NO3- delivered to them throughout the year. These results confirm previous work within Northeastern U.S. forests and extend observations to watersheds not dominated by a snow-melt driven hydrology. In contrast to previous work, unprocessed atmospherically derived NO3- export is associated with the period of high recharge and low biotic activity as opposed to spring snowmelt and other large runoff events.This work was funded by an EPA STAR Fellowship (FP-91637501-1) and a grant from QLF/The Sound Conservancy to RTB

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS: This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment

    The Canadian Bandaging Trial: Evidence-informed leg ulcer care and the effectiveness of two compression technologies

    Get PDF
    Background: Objective: To determine the relative effectiveness of evidence-informed practice using two high compression systems: four-layer (4LB) and short-stretch bandaging (SSB) in community care of venous leg ulcers. Design and Setting: Pragmatic, multi-centre, parallel-group, open-label, randomized controlled trial conducted in 10 centres. Cognitively intact adults (≥18 years) referred for community care (home or clinic) with a venous ulceration measuring ≥0.7cm and present for ≥1 week, with an ankle brachial pressure index (ABPI) ≥0.8, without medication-controlled Diabetes Mellitus or a previous failure to improve with either system, were eligible to participate.Methods: Consenting individuals were randomly allocated (computer-generated blocked randomization schedule) to receive either 4LB or SSB following an evidence-informed protocol. Primary endpoint: time-to- healing of the reference ulcer. Secondary outcomes: recurrence rates, health-related quality of life (HRQL), pain, and expenditures.Results: 424 individuals were randomized (4LB n = 215; SSB n = 209) and followed until their reference ulcer was healed (or maximum 30 months). An intent-to-treat analysis was conducted on all participants. Median time to ulcer healing in the 4LB group was 62 days [95% confidence interval (CI) 51 to 73], compared with 77 days (95% CI 63 to 91) in the SSB group. The unadjusted Kaplan-Meier curves revealed the difference in the distribution of cumulative healing times was not significantly different between group (log rank χ2 = 0.001, P = 0.98) nor ulcers recurrence (4LB, 10.1%; SSB, 13.3%; p = 0.345). Multivariable Cox Proportional Hazard Modeling also showed no significant between-bandage differences in healing time after controlling for significant covariates (p = 0.77). At 3-months post-baseline there were no differences in pain (no pain: 4LB, 22.7%; SSB, 26.7%; p = 0.335), or HRQL (SF-12 Mental Component Score: 4LB, 55.1; SSB, 55.8; p = 0.615; SF-12 Physical Component Score: 4LB, 39.0; SSB, 39.6; p = 0.675). The most common adverse events experienced by both groups included infection, skin breakdown and ulcer deterioration.Conclusions: The Canadian Bandaging Trial revealed that in the practice context of trained RNs using an evidence-informed protocol, the choice of bandage system (4LB and SSB) does not materially affect healing times, recurrence rates, HRQL, or pain. From a community practice perspective, this is positive news for patient-centred care allowing individual/family and practitioner choice in selecting compression technologies based on circumstances and context.Trial registration: clinicaltrials.gov Identifier: NCT00202267

    Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p
    • …
    corecore