1,513 research outputs found
Definitive screening accelerates Taxol biosynthetic pathway optimization and scale up in Saccharomyces cerevisiae cell factories
Background: Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck. / Methods and Major Results: In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories. The optimal factor combination was determined via data driven statistical modelling and validated in 1 L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg L-1, representing a three-fold improvement compared to the highest literature titers in S. cerevisiae. Comparable titers were obtained when the process was scaled up a further five-fold using 5 L bioreactors. / Conclusions: The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development
Cation distribution in manganese cobaltite spinels Co3−xMnxO4 (0 ≤ x ≤ 1) determined by thermal analysis
Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus
Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies
Taxadien-5α-hydroxylase and taxadien-5α-ol O-acetyltransferase catalyze the oxidation of taxadiene to taxadien-5α-ol and subsequent acetylation to taxadien-5α-yl-acetate in the biosynthesis of the blockbuster anticancer drug, paclitaxel (Taxol®). Despite decades of research, the promiscuous and multispecific CYP725A4 enzyme remains a major bottleneck in microbial biosynthetic pathway development. In this study, an interdisciplinary approach was applied for the construction and optimization of the early pathway in Saccharomyces cerevisiae, across a range of bioreactor scales. High-throughput microscale optimization enhanced total oxygenated taxane titer to 39.0 ± 5.7 mg/L and total taxane product titers were comparable at micro and minibioreactor scale at 95.4 ± 18.0 and 98.9 mg/L, respectively. The introduction of pH control successfully mitigated a reduction of oxygenated taxane production, enhancing the potential taxadien-5α-ol isomer titer to 19.2 mg/L, comparable with the 23.8 ± 3.7 mg/L achieved at microscale. A combination of bioprocess optimization and increased gas chromatography-mass spectrometry resolution at 1 L bioreactor scale facilitated taxadien-5α-yl-acetate detection with a final titer of 3.7 mg/L. Total oxygenated taxane titers were improved 2.7-fold at this scale to 78 mg/L, the highest reported titer in yeast. Critical parameters affecting the productivity of the engineered strain were identified across a range of scales, providing a foundation for the development of robust integrated bioprocess control systems
On the origin of the Boson peak in globular proteins
We study the Boson Peak phenomenology experimentally observed in globular
proteins by means of elastic network models. These models are suitable for an
analytic treatment in the framework of Euclidean Random Matrix theory, whose
predictions can be numerically tested on real proteins structures. We find that
the emergence of the Boson Peak is strictly related to an intrinsic mechanical
instability of the protein, in close similarity to what is thought to happen in
glasses. The biological implications of this conclusion are also discussed by
focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems,
Molveno (2006
Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae
Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated
Structural efficiency of percolation landscapes in flow networks
Complex networks characterized by global transport processes rely on the
presence of directed paths from input to output nodes and edges, which organize
in characteristic linked components. The analysis of such network-spanning
structures in the framework of percolation theory, and in particular the key
role of edge interfaces bridging the communication between core and periphery,
allow us to shed light on the structural properties of real and theoretical
flow networks, and to define criteria and quantities to characterize their
efficiency at the interplay between structure and functionality. In particular,
it is possible to assess that an optimal flow network should look like a "hairy
ball", so to minimize bottleneck effects and the sensitivity to failures.
Moreover, the thorough analysis of two real networks, the Internet
customer-provider set of relationships at the autonomous system level and the
nervous system of the worm Caenorhabditis elegans --that have been shaped by
very different dynamics and in very different time-scales--, reveals that
whereas biological evolution has selected a structure close to the optimal
layout, market competition does not necessarily tend toward the most customer
efficient architecture.Comment: 8 pages, 5 figure
interPopula: a Python API to access the HapMap Project dataset
<p>Abstract</p> <p>Background</p> <p>The HapMap project is a publicly available catalogue of common genetic variants that occur in humans, currently including several million SNPs across 1115 individuals spanning 11 different populations. This important database does not provide any programmatic access to the dataset, furthermore no standard relational database interface is provided.</p> <p>Results</p> <p>interPopula is a Python API to access the HapMap dataset. interPopula provides integration facilities with both the Python ecology of software (e.g. Biopython and matplotlib) and other relevant human population datasets (e.g. Ensembl gene annotation and UCSC Known Genes). A set of guidelines and code examples to address possible inconsistencies across heterogeneous data sources is also provided.</p> <p>Conclusions</p> <p>interPopula is a straightforward and flexible Python API that facilitates the construction of scripts and applications that require access to the HapMap dataset.</p
Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816]
BACKGROUND: The morbidity and mortality associated with depression are considerable and continue to increase. Depression currently ranks fourth among the major causes of disability worldwide, after lower respiratory infections, prenatal conditions, and HIV/AIDS. Crocus sativus L. is used to treat depression. Many medicinal plants textbooks refer to this indication whereas there is no evidence-based document. Our objective was to compare the efficacy of stigmas of Crocus sativus (saffron) with imipramine in the treatment of mild to moderate depression in a 6-week pilot double-blind randomized trial. METHODS: Thirty adult outpatients who met the Diagnostic and Statistical Manual of Mental Disorders, 4(th )edition for major depression based on the structured clinical interview for DSM IV participated in the trial. Patients have a baseline Hamilton Rating Scale for Depression score of at least 18. In this double-blind, single-center trial, patients were randomly assigned to receive capsule of saffron 30 mg/day (TDS) (Group 1) and capsule of imipramine 100 mg/day (TDS) (Group 2) for a 6-week study. RESULTS: Saffron at this dose was found to be effective similar to imipramine in the treatment of mild to moderate depression (F = 2.91, d.f. = 1, P = 0.09). In the imipramine group anticholinergic effects such as dry mouth and also sedation were observed more often that was predictable. CONCLUSION: The main overall finding from this study is that saffron may be of therapeutic benefit in the treatment of mild to moderate depression. To the best of our knowledge this is the first clinical trial that supports this indication for saffron. A large-scale trial with placebo control is warranted
Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings
Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model
(GN2), and its chiral cousin, the NJL2 model, have shown that there are phases
with inhomogeneous crystalline condensates. These (static) condensates can be
found analytically because the relevant Hartree-Fock and gap equations can be
reduced to the nonlinear Schr\"odinger equation, whose deformations are
governed by the mKdV and AKNS integrable hierarchies, respectively. Recently,
Thies et al have shown that time-dependent Hartree-Fock solutions describing
baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation,
and can be mapped directly to classical string solutions in AdS3. Here we
propose a geometric perspective for this result, based on the generalized
Weierstrass spinor representation for the embedding of 2d surfaces into 3d
spaces, which explains why these well-known integrable systems underlie these
various Gross-Neveu gap equations, and why there should be a connection to
classical string theory solutions. This geometric viewpoint may be useful for
higher dimensional models, where the relevant integrable hierarchies include
the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur
- …