74 research outputs found

    C. Presl).

    Get PDF

    Use of a Low-Mach Model On a CFD&HT Solver for the Elements of An Object Oriented Program to Numerically Simulate Hermetic Refrigeration Compressors

    Get PDF
    A powerful object oriented approach for the simulation of generic thermal systems (Damle et al., 2008) is used as a framework to numerically simulate the thermal and fluid behavior of hermetic reciprocating compressors. A physical abstraction of the compressor system provides a vertex-edge graph, defining the elements and the neighborhood relations of the system to be solved. Each one of these resulting elements is modeled in order to be solved by itself by giving their respective boundary conditions. Since each element provides its own solver tool, the coupled system can be solved in an integrated form. Into previous works, an unstructured and parallel object oriented Computational Fluid Dynamics and Heat Transfer code (from now on CFD&HT) for accurate and reliable solving of turbulent industrial flow, called TermoFluids (Lehmkuhl et al., 2007), was used to provide with CFD&HT capability the system elements (López et al., 2010). In this work, a Low-Mach based CFD&HT module (Chiva et al., 2011) implemented within the TermoFluids software has been used solve the fluid domain existing inside the shell of a reciprocating compressor, which is identified as one of the compressor elements in the abstraction stage. This improvement allows us to numerically simulate the recirculation flow inside the shell of a reciprocating compressor, providing detailed information about suction area of the compressor and allowing study of new geometric configurations of such part. Furthermore, in comparison with previously tested CFD&HT modules, the Low-Mach model allows better treatment of the compressibility effects generated at the inner elements of the compressor such as chambers, tubes and undoubtedly the compression chamber

    Quantitative Bias in Illumina TruSeq and a Novel Post Amplification Barcoding Strategy for Multiplexed DNA and Small RNA Deep Sequencing

    Get PDF
    Here we demonstrate a method for unbiased multiplexed deep sequencing of RNA and DNA libraries using a novel, efficient and adaptable barcoding strategy called Post Amplification Ligation-Mediated (PALM). PALM barcoding is performed as the very last step of library preparation, eliminating a potential barcode-induced bias and allowing the flexibility to synthesize as many barcodes as needed. We sequenced PALM barcoded micro RNA (miRNA) and DNA reference samples and evaluated the quantitative barcode-induced bias in comparison to the same reference samples prepared using the Illumina TruSeq barcoding strategy. The Illumina TruSeq small RNA strategy introduces the barcode during the PCR step using differentially barcoded primers, while the TruSeq DNA strategy introduces the barcode before the PCR step by ligation of differentially barcoded adaptors. Results show virtually no bias between the differentially barcoded miRNA and DNA samples, both for the PALM and the TruSeq sample preparation methods. We also multiplexed miRNA reference samples using a pre-PCR barcode ligation. This barcoding strategy results in significant bias

    A new mutant genetic resource for tomato crop improvement by TILLING technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last decade, the availability of gene sequences of many plant species, including tomato, has encouraged the development of strategies that do not rely on genetic transformation techniques (GMOs) for imparting desired traits in crops. One of these new emerging technology is TILLING (Targeting Induced Local Lesions In Genomes), a reverse genetics tool, which is proving to be very valuable in creating new traits in different crop species.</p> <p>Results</p> <p>To apply TILLING to tomato, a new mutant collection was generated in the genetic background of the processing tomato cultivar Red Setter by treating seeds with two different ethylemethane sulfonate doses (0.7% and 1%). An associated phenotype database, LycoTILL, was developed and a TILLING platform was also established. The interactive and evolving database is available online to the community for phenotypic alteration inquiries. To validate the Red Setter TILLING platform, induced point mutations were searched in 7 tomato genes with the mismatch-specific ENDO1 nuclease. In total 9.5 kb of tomato genome were screened and 66 nucleotide substitutions were identified. The overall mutation density was estimated and it resulted to be 1/322 kb and 1/574 kb for the 1% EMS and 0.7% EMS treatment respectively.</p> <p>Conclusions</p> <p>The mutation density estimated in our collection and its comparison with other TILLING populations demonstrate that the Red Setter genetic resource is suitable for use in high-throughput mutation discovery. The Red Setter TILLING platform is open to the research community and is publicly available via web for requesting mutation screening services.</p

    Geographical gradient of the <em>eIF4E</em> alleles conferring resistance to potyviruses in pea (<em>Pisum</em>) germplasm

    Get PDF
    <div><p>Background</p><p>The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the <i>eIF4E</i> gene to identify novel genetic diversity.</p><p>Methodology/Principal findings</p><p>Germplasm of 2803 pea accessions was screened for <i>eIF4E</i> intron 3 length polymorphism, resulting in the detection of four <i>eIF4E<sup>A-B-C-S</sup></i> variants, whose distribution was geographically structured. The <i>eIF4E<sup>A</sup></i> variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, <i>eIF4E<sup>B</sup></i>, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The <i>eIF4E<sup>C</sup></i> variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The <i>eIF4E<sup>S</sup></i> variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (<i>eIF4E<sup>A-1-2-3-4-5-6-7</sup></i>, <i>eIF4E<sup>B-1</sup></i>, <i>eIF4E<sup>C-2</sup></i>) conferred resistance to the P1 PSbMV pathotype.</p><p>Conclusions/Significance</p><p>This work identified novel <i>eIF4E</i> alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible <i>eIF4E<sup>S1</sup></i> allele. Despite high variation present in wild <i>Pisum</i> accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the pea host.</p></div

    EcoTILLING in Capsicum species: searching for new virus resistances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The EcoTILLING technique allows polymorphisms in target genes of natural populations to be quickly analysed or identified and facilitates the screening of genebank collections for desired traits. We have developed an EcoTILLING platform to exploit <it>Capsicum </it>genetic resources. A perfect example of the utility of this EcoTILLING platform is its application in searching for new virus-resistant alleles in <it>Capsicum </it>genus. Mutations in translation initiation factors (eIF4E, eIF(iso)4E, eIF4G and eIF(iso)4G) break the cycle of several RNA viruses without affecting the plant life cycle, which makes these genes potential targets to screen for resistant germplasm.</p> <p>Results</p> <p>We developed and assayed a cDNA-based EcoTILLING platform with 233 cultivated accessions of the genus <it>Capsicum</it>. High variability in the coding sequences of the <it>eIF4E </it>and <it>eIF(iso)4E </it>genes was detected using the cDNA platform. After sequencing, 36 nucleotide changes were detected in the CDS of <it>eIF4E </it>and 26 in <it>eIF(iso)4E</it>. A total of 21 <it>eIF4E </it>haplotypes and 15 <it>eIF(iso)4E </it>haplotypes were identified. To evaluate the functional relevance of this variability, 31 possible eIF4E/eIF(iso)4E combinations were tested against <it>Potato virus Y</it>. The results showed that five new <it>eIF4E </it>variants (<it>pvr2<sup>10</sup></it>, <it>pvr2<sup>11</sup></it>, <it>pvr2<sup>12</sup></it>, <it>pvr2<sup>13 </sup></it>and <it>pvr2<sup>14</sup></it>) were related to PVY-resistance responses.</p> <p>Conclusions</p> <p>EcoTILLING was optimised in different <it>Capsicum </it>species to detect allelic variants of target genes. This work is the first to use cDNA instead of genomic DNA in EcoTILLING. This approach avoids intronic sequence problems and reduces the number of reactions. A high level of polymorphism has been identified for initiation factors, showing the high genetic variability present in our collection and its potential use for other traits, such as genes related to biotic or abiotic stresses, quality or production. Moreover, the new <it>eIF4E </it>and <it>eIF(iso)4E </it>alleles are an excellent collection for searching for new resistance against other RNA viruses.</p

    An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses

    Get PDF
    BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study

    TILLING - a shortcut in functional genomics

    Get PDF
    Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING
    corecore