13 research outputs found

    Structural evolution of the 40 km wide Araguainha impact structure, central Brazil

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The 40 kill wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant Structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward-verging inclined folds and a km-scale anticline in the outer ring of the structure. The Folding stage was followed by radial and concentric faulting, With down-ward displacement of kilometer-scale blocks around the crater rim. The central uplift records evidence for kin-scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached Front the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km-scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward-plunging radial folds indicate tangential oblate shortening of the strata during the imbrication Of the thrust sheets. Each individual sheet records all early stage of folding and thickening due to non-coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer-scale inward movement of the target strata from the transient cavity walls to the central uplift. The Outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10-12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.434701716Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Barringer Family FundClaude Leon Foundation of South AfricaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [05/51530-3

    Rock magnetic signature of the Middle Eocene Climatic Optimum (MECO) event in different oceanic basins

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) event at ~40 Ma was a greenhouse warming which indicates an abrupt reversal in long-term cooling through the middle Eocene. Here, we present environmental and rock magnetic data from sedimentary successions from the Indian Ocean (ODP Hole 711A) and eastern NeoTethys (Monte Cagnero section - MCA). The high-resolution environmental magnetism record obtained for MCA section shows an interval of increase of magnetic parameters comprising the MECO peak. A relative increase in eutrophic nannofossil taxa spans the culmination of the MECO warming and its aftermath and coincides with a positive carbon isotope excursion, and a peak in magnetite and hematite/goethite concentrations. The magnetite peak reflects the appearance of magnetofossils, while the hematite/goethite apex are attributed to an enhanced detrital mineral contribution, likely related to aeolian dust transported from the continent adjacent to the Neo-Tethys Ocean during a drier, more seasonal MECO climate. Seasurface iron fertilization is inferred to have stimulated high phytoplankton productivity, increasing organic carbon export to the seafloor and promoting enhanced biomineralization of magnetotactic bacteria, which are preserved as magnetofossils during the warmest periods of the MECO event. Environmental magnetic parameters show the same behavior for ODP Hole 711A. We speculate that iron fertilization promoted by aeolian hematite during the MECO event has contributed significantly to increase the primary productivity in the oceans. The widespread occurrence of magnetofossils in other warming periods suggests a common mechanism linking climate warming and enhancement of magnetosome production and preservation

    AMS and grain shape fabric of the Late Palaeozoic diamictites of the Southeastern Paran Basin, Brazil

    No full text
    Diamictites interbedded with marine shales and turbidites onlap the eastern border of the Parana Basin (Southern Brazil). These poorly sorted sediments were deposited during the Permo-Carboniferous glaciation, and their matrix-supported clasts show no preferred orientation. These massive rocks have been studied using anisotropy of magnetic susceptibility (AMS) and grain shape fabric. Hysteresis loops and thermomagnetic measurements show that AMS depends mostly on the paramagnetic clays, but fine ferromagnetic particles also contribute to the anisotropy. The coarse silt to sand grain preferred orientation study supports the use of AMS in describing the diamictite fabric, at least regarding the orientation of the foliation. AMS and grain shape data reveal subhorizontal to weakly inclined magnetic and grain shape foliation parallel to the regional bedding. The magnetic lineations are normally scattered within the foliation plane in agreement with the oblate AMS ellipsoids found in these rocks. Both fabric patterns are consistent with deposition by subaqueous mudflows that were resedimented downslope, with elastic supply from continental sources. The off-vertical grain shape foliation poles suggest that the deposition of diamictites was controlled by the depocentre topography of the Rio do Sul sub-basin

    Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup

    Get PDF
    During Neoproterozoic Snowball Earth glaciations, the oceans gained massive amounts of alkalinity, culminating in the deposition of massive cap carbonates on deglaciation. Changes in terrestrial runoff associated with both breakup of the Rodinia supercontinent and deglaciation can explain some, but not all of the requisite changes in ocean chemistry. Submarine volcanism along shallow ridges formed during supercontinent breakup results in the formation of large volumes of glassy hyaloclastite, which readily alters to palagonite. Here we estimate fluxes of calcium, magnesium, phosphorus, silica and bicarbonate associated with these shallow-ridge processes, and argue that extensive submarine volcanism during the breakup of Rodinia made an important contribution to changes in ocean chemistry during Snowball Earth glaciations. We use Monte Carlo simulations to show that widespread hyaloclastite alteration under near-global sea-ice cover could lead to Ca2+ and Mg2+ supersaturation over the course of the glaciation that is sufficient to explain the volume of cap carbonates deposited. Furthermore, our conservative estimates of phosphorus release are sufficient to explain the observed P:Fe ratios in sedimentary iron formations from this time. This large phosphorus release may have fuelled primary productivity, which in turn would have contributed to atmospheric O2 rises that followed Snowball Earth episodes
    corecore