357 research outputs found

    Highly-Resolved Numerical Simulation of the Turbulent Combustion Process in Experimental Burners

    Get PDF
    This paper presents investigations of experimentally well-characterised turbulent flames with highly-resolved Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS). The combustion process is modelled with a flamelet-based approach, which assumes that the local turbulent flame structure can be described by an ensemble of wrinkled laminar flames. Good agreements between the simulation results and experimental measurement data is achieved. The governing equations are discretised with the Finite Volume Method (FVM). The numerical implementation is tailored for massively parallel simulations on a large number of grid cells. The computational efficiency benefits from the applied simple grid structure and the use of non-blocking Message Passing Interface (MPI) parallelisation

    Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum.

    Get PDF
    Made available in DSpace on 2018-09-19T00:34:08Z (GMT). No. of bitstreams: 1 Andradeetal2016PlantPathology.pdf: 496774 bytes, checksum: 76a3a6b713889ce54e6f4b703b0bab3b (MD5) Previous issue date: 2018-03-09bitstream/item/173733/1/Andrade-et-al-2016-Plant-Pathology.pd

    Reducing orbital eccentricity in binary black hole simulations

    Get PDF
    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but non-zero orbital eccentricities. In this paper the quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∌5\sim 5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964). The gravitational waveforms, which contain ∌8\sim 8 cycles in the dominant l=m=2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the "New Frontiers" special issue of CQ

    Generalized quasiperiodic Rauzy tilings

    Full text link
    We present a geometrical description of new canonical dd-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.Comment: 11 pages, 3 EPS figures, final version with minor change

    Spin effects in gravitational radiation backreaction II. Finite mass effects

    Get PDF
    A convenient formalism for averaging the losses produced by gravitational radiation backreaction over one orbital period was developed in an earlier paper. In the present paper we generalize this formalism to include the case of a closed system composed from two bodies of comparable masses, one of them having the spin S. We employ the equations of motion given by Barker and O'Connell, where terms up to linear order in the spin (the spin-orbit interaction terms) are kept. To obtain the radiative losses up to terms linear in the spin, the equations of motion are taken to the same order. Then the magnitude L of the angular momentum L, the angle kappa subtended by S and L and the energy E are conserved. The analysis of the radial motion leads to a new parametrization of the orbit. From the instantaneous gravitational radiation losses computed by Kidder the leading terms and the spin-orbit terms are taken. Following Apostolatos, Cutler, Sussman and Thorne, the evolution of the vectors S and L in the momentary plane spanned by these vectors is separated from the evolution of the plane in space. The radiation-induced change in the spin is smaller than the leading-order spin terms in the momentary angular momentum loss. This enables us to compute the averaged losses in the constants of motion E, L and L_S=L cos kappa. In the latter, the radiative spin loss terms average to zero. An alternative description using the orbital elements a,e and kappa is given. The finite mass effects contribute terms, comparable in magnitude, to the basic, test-particle spin terms in the averaged losses.Comment: 12 pages, 1 figure, Phys.Rev.D15, March, 199

    Spin effects in gravitational radiation backreaction III. Compact binaries with two spinning components

    Full text link
    The secular evolution of a spinning, massive binary system in eccentric orbit is analyzed, expanding and generalizing our previous treatments of the Lense-Thirring motion and the one-spin limit. The spin-orbit and spin-spin effects up to the 3/2 post-Newtonian order are considered, both in the equations of motion and in the radiative losses. The description of the orbit in terms of the true anomaly parametrization provides a simple averaging technique, based on the residue theorem, over eccentric orbits. The evolution equations of the angle variables characterizing the relative orientation of the spin and orbital angular momenta reveal a speed-up effect due to the eccentricity. The dissipative evolutions of the relevant dynamical and angular variables is presented in the form of a closed system of differential equations.Comment: 10 pages, 1 figur

    Spin-spin effects in radiating compact binaries

    Full text link
    The dynamics of a binary system with two spinning components on an eccentric orbit is studied, with the inclusion of the spin-spin interaction terms appearing at the second post-Newtonian order. A generalized true anomaly parametrization properly describes the radial component of the motion. The average over one radial period of the magnitude of the orbital angular momentum Lˉ\bar{L} is found to have no nonradiative secular change. All spin-spin terms in the secular radiative loss of the energy and magnitude of orbital angular momentum are given in terms of Lˉ\bar{L} and other constants of the motion. Among them, self-interaction spin effects are found, representing the second post-Newtonian correction to the 3/2 post-Newtonian order Lense-Thirring approximation.Comment: 12 pages, to appear in Phys. Rev.

    Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems

    Full text link
    We study energy spectra, eigenstates and quantum diffusion for one- and two-dimensional quasiperiodic tight-binding models. As our one-dimensional model system we choose the silver mean or `octonacci' chain. The two-dimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates which is the typical behaviour for one-dimensional Schr"odinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either band-like or fractal-like. However, the eigenstates are multifractal. The temporal spreading of a wavepacket is described in terms of the autocorrelation function C(t) and the mean square displacement d(t). In all cases, we observe power laws for C(t) and d(t) with exponents -delta and beta, respectively. For the octonacci chain, 0<delta<1, whereas for the labyrinth tiling a crossover is observed from delta=1 to 0<delta<1 with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with 0<beta<1 for both systems. Moreover, we find that the behaviour of C(t) and d(t) is independent of the shape and the location of the initial wavepacket. We use our results to check several relations between the diffusion exponent beta and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature.Comment: 24 pages, REVTeX, 10 PostScript figures included, major revision, new results adde

    Multifractal analysis of the electronic states in the Fibonacci superlattice under weak electric fields

    Full text link
    Influence of the weak electric field on the electronic structure of the Fibonacci superlattice is considered. The electric field produces a nonlinear dynamics of the energy spectrum of the aperiodic superlattice. Mechanism of the nonlinearity is explained in terms of energy levels anticrossings. The multifractal formalism is applied to investigate the effect of weak electric field on the statistical properties of electronic eigenfunctions. It is shown that the applied electric field does not remove the multifractal character of the electronic eigenfunctions, and that the singularity spectrum remains non-parabolic, however with a modified shape. Changes of the distances between energy levels of neighbouring eigenstates lead to the changes of the inverse participation ratio of the corresponding eigenfunctions in the weak electric field. It is demonstrated, that the local minima of the inverse participation ratio in the vicinity of the anticrossings correspond to discontinuity of the first derivative of the difference between marginal values of the singularity strength. Analysis of the generalized dimension as a function of the electric field shows that the electric field correlates spatial fluctuations of the neighbouring electronic eigenfunction amplitudes in the vicinity of anticrossings, and the nonlinear character of the scaling exponent confirms multifractality of the corresponding electronic eigenfunctions.Comment: 10 pages, 9 figure
    • 

    corecore