10,539 research outputs found

    Numerical renormalization group study of random transverse Ising models in one and two space dimensions

    Full text link
    The quantum critical behavior and the Griffiths-McCoy singularities of random quantum Ising ferromagnets are studied by applying a numerical implementation of the Ma-Dasgupta-Hu renormalization group scheme. We check the procedure for the analytically tractable one-dimensional case and apply our code to the quasi-one-dimensional double chain. For the latter we obtain identical critical exponents as for the simple chain implying the same universality class. Then we apply the method to the two-dimensional case for which we get estimates for the exponents that are compatible with a recent study in the same spirit.Comment: 10 pages LaTeX, eps-figures and PTP-macros included. Proceedings of the ICCP5, Kanazawa (Japan), 199

    Particle acceleration close to the supermassive black hole horizon: the case of M87

    Full text link
    The radio galaxy M87 has recently been found to be a rapidly variable TeV emitting source. We analyze the implications of the observed TeV characteristics and show that it proves challenging to account for them within conventional acceleration and emission models. We discuss a new pulsar-type scenario for the origin of variable, very high energy (VHE) emission close to the central supermassive black hole and show that magneto-centrifugally accelerated electrons could efficiently Compton upscatter sub-mm ADAF disk photons to the TeV regime, leading to VHE characteristics close to the observed ones. This suggests, conversely, that VHE observations of highly under-luminous AGNs could provide an important diagnostic tool for probing the conditions prevalent in the inner accretion disk of these sources.Comment: 5 pages, one figure (typos corrected); based on presentation at "High Energy Phenomena in Relativistic Outflows", Dublin, Sept. 2007; accepted for publication in International Journal of Modern Physics

    Dislocations in the ground state of the solid-on-solid model on a disordered substrate

    Full text link
    We investigate the effects of topological defects (dislocations) to the ground state of the solid-on-solid (SOS) model on a simple cubic disordered substrate utilizing the min-cost-flow algorithm from combinatorial optimization. The dislocations are found to destabilize and destroy the elastic phase, particularly when the defects are placed only in partially optimized positions. For multi defect pairs their density decreases exponentially with the vortex core energy. Their mean distance has a maximum depending on the vortex core energy and system size, which gives a fractal dimension of 1.27±0.021.27 \pm 0.02. The maximal mean distances correspond to special vortex core energies for which the scaling behavior of the density of dislocations change from a pure exponential decay to a stretched one. Furthermore, an extra introduced vortex pair is screened due to the disorder-induced defects and its energy is linear in the vortex core energy.Comment: 6 pages RevTeX, eps figures include

    Decision tree rating scales for workload estimation: Theme and variations

    Get PDF
    The Modified Cooper-Harper (MCH) scale which is a sensitive indicator of workload in several different types of aircrew tasks was examined. The study determined if variations of the scale might provide greater sensitivity and the reasons for the sensitivity of the scale. The MCH scale and five newly devised scales were examined in two different aircraft simulator experiments in which pilot loading was treated as an independent variable. It is indicated that while one of the new scales may be more sensitive in a given experiment, task dependency is a problem. The MCH scale exhibits consistent senstivity and remains the scale recommended for general use. The MCH scale results are consistent with earlier experiments. The rating scale experiments are reported and the questionnaire results which were directed to obtain a better understanding of the reasons for the relative sensitivity of the MCH scale and its variations are described

    VERITAS Distant Laser Calibration and Atmospheric Monitoring

    Full text link
    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Finite-size scaling of pseudo-critical point distributions in the random transverse-field Ising chain

    Full text link
    We study the distribution of finite size pseudo-critical points in a one-dimensional random quantum magnet with a quantum phase transition described by an infinite randomness fixed point. Pseudo-critical points are defined in three different ways: the position of the maximum of the average entanglement entropy, the scaling behavior of the surface magnetization, and the energy of a soft mode. All three lead to a log-normal distribution of the pseudo-critical transverse fields, where the width scales as L1/νL^{-1/\nu} with ν=2\nu=2 and the shift of the average value scales as L1/νtypL^{-1/\nu_{typ}} with νtyp=1\nu_{typ}=1, which we related to the scaling of average and typical quantities in the critical region.Comment: 4 pages, 2 figure

    VERITAS Observations of Extragalactic Non-Blazars

    Full text link
    During the 2007/2008 season, VERITAS was used for observations at E>200 GeV of several extragalactic non-blazar objects such as galaxy clusters, starburst and interacting galaxies, dwarf galaxies, and nearby galaxies. In these proceedings, we present preliminary results from our observations of dwarf galaxies and M87. Results from observation of other non-blazar sources are presented in separate papers in the proceedings.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Ground state properties of fluxlines in a disordered environment

    Full text link
    A new numerical method to calculate exact ground states of multi-fluxline systems with quenched disorder is presented, which is based on the minimum cost flow algorithm from combinatorial optimization. We discuss several models that can be studied with this method including their specific implementations, physically relevant observables and results: 1) the N-line model with N fluxlines (or directed polymers) in a d-dimensional environment with point and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass model for a disordered superconductor in the strong screening limit and 3) the Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include

    Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    Full text link
    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confronted with numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution show multi-scaling character. In the Griffiths phase, which is an extended part of the off-critical region average autocorrelations have a power-law form with a non-universal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include

    Superconductor-to-Normal Phase Transition in a Vortex Glass Model: Numerical Evidence for a New Percolation Universality Class

    Full text link
    The three-dimensional strongly screened vortex-glass model is studied numerically using methods from combinatorial optimization. We focus on the effect of disorder strength on the ground state and found the existence of a disorder-driven normal-to-superconducting phase transition. The transition turns out to be a geometrical phase transition with percolating vortex loops in the ground state configuration. We determine the critical exponents and provide evidence for a new universality class of correlated percolation.Comment: 11 pages LaTeX using IOPART.cls, 11 eps-figures include
    corecore