18 research outputs found

    An evaluation of the brain distribution of [11C]GSK1034702, a muscarinic-1 (M1) positive allosteric modulator in the living human brain using positron emission tomography

    Get PDF
    The ability to quantify the capacity of a central nervous system (CNS) drug to cross the human blood-brain barrier (BBB) provides valuable information for de-risking drug development of new molecules. Here, we present a study, where a suitable positron emission tomography (PET) ligand was not available for the evaluation of a potent muscarinic acetylcholine receptor type-1 (M1) allosteric agonist (GSK1034702) in the primate and human brain. Hence, direct radiolabelling of the novel molecule was performed and PET measurements were obtained and combined with in vitro equilibrium dialysis assays to enable assessment of BBB transport and estimation of the free brain concentration of GSK1034702 in vivo. GSK1034702 was radiolabelled with ¹¹C, and the brain distribution of [¹¹C]GSK1034702 was investigated in two anaesthetised baboons and four healthy male humans. In humans, PET scans were performed (following intravenous injection of [¹¹C]GSK1034702) at baseline and after a single oral 5-mg dose of GSK1034702. The in vitro brain and plasma protein binding of GSK1034702 was determined across a range of species using equilibrium dialysis. The distribution of [¹¹C]GSK1034702 in the primate brain was homogenous and the whole brain partition coefficient (VT) was 3.97. In contrast, there was mild regional heterogeneity for GSK1034702 in the human brain. Human whole brain VT estimates (4.9) were in broad agreement with primate VT and the fP/fND ratio (3.97 and 2.63, respectively), consistent with transport by passive diffusion across the BBB. In primate and human PET studies designed to evaluate the transport of a novel M1 allosteric agonist (GSK1034702) across the BBB, we have demonstrated good brain uptake and BBB passage consistent with passive diffusion or active influx. These studies discharged some of the perceived development risks for GSK1034702 and provided information to progress the molecule into the next stage of clinical development

    Thyroid hormone transporter genes and grey matter changes in patients with major depressive disorder and healthy controls

    No full text
    Several studies have established links between thyroid gland dysfunction and mood disorders, in particular major depressive disorder (MDD). Preliminary evidence also suggests that thyroid hormone gene variants influence grey matter (GM) volume, which is reportedly altered in patients with MDD. This study tested for associations of single nucleotide polymorphisms (SNPs) in two thyroid hormone transporter genes with regional GM volume differences in a large sample population of patients with recurrent MDD and healthy volunteers

    Structural brain changes in patients with recurrent major depressive disorder presenting with anxiety symptoms

    No full text
    Major depressive disorder (MDD) presents with extensive clinical heterogeneity. In particular, overlap with anxiety symptoms is common during depressive episodes and as a comorbid disorder. The aim of this study was to test for morphological brain differences between patients having a history of recurrent MDD with, and without, anxiety symptoms (MDD+A and MDD−A)

    Risk factors for schizophrenia. Follow-up data from the Northern Finland 1966 Birth Cohort Study

    No full text
    This paper updates single risk factors identified by the Northern Finland 1966 Birth Cohort Study up to the end of year 2001 or age 34. Impaired performance (e.g., delayed motor or intellectual development) or adverse exposures (e.g., pregnancy and birth complications, central nervous system diseases) are associated with an increased risk for schizophrenia. However, upper social class girls and clever schoolboys also have an increased risk to develop schizophrenia, contrasted to their peers. Individuals who subsequently develop schizophrenia follow a developmental trajectory that partly and subtly differs from that of the general population; this trajectory lacks flexibility and responsiveness compared to control subjects, at least in the early stages. We propose a descriptive, lifespan, multilevel systems model on the development and course of schizophrenia
    corecore