1,090 research outputs found

    Magnetic Flux Braiding: Force-Free Equilibria and Current Sheets

    Get PDF
    We use a numerical nonlinear multigrid magnetic relaxation technique to investigate the generation of current sheets in three-dimensional magnetic flux braiding experiments. We are able to catalogue the relaxed nonlinear force-free equilibria resulting from the application of deformations to an initially undisturbed region of plasma containing a uniform, vertical magnetic field. The deformations are manifested by imposing motions on the bounding planes to which the magnetic field is anchored. Once imposed the new distribution of magnetic footpoints are then taken to be fixed, so that the rest of the plasma must then relax to a new equilibrium configuration. For the class of footpoint motions we have examined, we find that singular and nonsingular equilibria can be generated. By singular we mean that within the limits imposed by numerical resolution we find that there is no convergence to a well-defined equilibrium as the number of grid points in the numerical domain is increased. These singular equilibria contain current "sheets" of ever-increasing current intensity and decreasing width; they occur when the footpoint motions exceed a certain threshold, and must include both twist and shear to be effective. On the basis of these results we contend that flux braiding will indeed result in significant current generation. We discuss the implications of our results for coronal heating.Comment: 13 pages, 12 figure

    The homotopy theory of dg-categories and derived Morita theory

    Full text link
    The main purpose of this work is the study of the homotopy theory of dg-categories up to quasi-equivalences. Our main result provides a natural description of the mapping spaces between two dg-categories CC and DD in terms of the nerve of a certain category of (C,D)(C,D)-bimodules. We also prove that the homotopy category Ho(dgCat)Ho(dg-Cat) is cartesian closed (i.e. possesses internal Hom's relative to the tensor product). We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories CC and DD as the dg-category of (C,D)(C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the \emph{classifying space of dg-categories} (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent complexes (resp. perfect) on their product.Comment: 50 pages. Few mistakes corrected, and some references added. Thm. 8.15 is new. Minor corrections. Final version, to appear in Inventione

    Generalizing Optical Geometry

    Full text link
    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz and Lasota 1997, Class. Quantum Grav. 14 (1997) A23). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson, Class. Quantum Grav. 23 (2006) 1) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity.Comment: 19 pages, 1 figure. A more general analysis is presented than in the former version. See also the companion papers arXiv:0708.2493, arXiv:0708.2533 and arXiv:0708.253

    Inertial forces and the foundations of optical geometry

    Full text link
    Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in General Relativity. Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota, Class. Quantum Grav. 14 (1997) A23), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways of describing spatial curvature of a trajectory has been discussed in papers prior to this, one particular prescription (which differs from the standard projected curvature when the reference is shearing) appears novel. For the particular case of a hypersurface-forming congruence, using a suitable rescaling of spacetime, we show that a geodesic photon is always following a line that is spatially straight with respect to the new curvature measure. This fact is intimately connected to Fermat's principle, and allows for a certain generalization of the optical geometry as will be further pursued in a companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61). For the particular case when the shear-tensor vanishes, we present the inertial force equation in three-dimensional form (using the bold face vector notation), and note how similar it is to its Newtonian counterpart. From the spatial curvature measures that we introduce, we derive corresponding covariant differentiations of a vector defined along a spacetime trajectory. This allows us to connect the formalism of this paper to that of Jantzen et. al. (see e.g. Bini et. al., Int. J. Mod. Phys. D 6 (1997) 143).Comment: 42 pages, 7 figure

    Torsion pairs and simple-minded systems in triangulated categories

    Full text link
    Let T be a Hom-finite triangulated Krull-Schmidt category over a field k. Inspired by a definition of Koenig and Liu, we say that a family S of pairwise orthogonal objects in T with trivial endomorphism rings is a simple-minded system if its closure under extensions is all of T. We construct torsion pairs in T associated to any subset X of a simple-minded system S, and use these to define left and right mutations of S relative to X. When T has a Serre functor \nu, and S and X are invariant under \nu[1], we show that these mutations are again simple-minded systems. We are particularly interested in the case where T is the stable module category of a self-injective algebra \Lambda. In this case, our mutation procedure parallels that introduced by Koenig and Yang for simple-minded collections in the derived category of \Lambda. It follows that the mutation of the set of simple \Lambda-modules relative to X yields the images of the simple \Gamma-modules under a stable equivalence between \Gamma\ and \Lambda, where \Gamma\ is the tilting mutation of \Lambda\ relative to X.Comment: Minor corrections. To appear in Applied Categorical Structures. The final publication is available at springerlink.com: http://link.springer.com/article/10.1007%2Fs10485-014-9365-

    Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy

    Get PDF
    The widespread use of zircon in geochemical and geochronological studies of crustal rocks is underpinned by an understanding of the processes that may modify its composition. Deformation during tectonic and impact related strain is known to modify zircon trace element compositions, but the mechanisms by which this occurs remain unresolved. Here we combine electron backscatter diffraction, transmission Kikuchi diffraction and atom probe microscopy to investigate trace element migration associated with a ~20 nm wide, 2° low-angle subgrain boundary formed in zircon during a single, high-strain rate, deformation associated with a bolide impact. The low-angle boundary shows elevated concentrations of both substitutional (Y) and interstitial (Al, Mg and Be) ions. The observed compositional variations reflect a dynamic process associated with the recovery of shock-induced vacancies and dislocations into lower energy low-angle boundaries. Y segregation is linked to the migration and localisation of oxygen vacancies, whilst the interstitial ions migrate in association with dislocations. These data represent the direct nanoscale observation of geologically-instantaneous, trace element migration associated with crystal plasticity of zircon and provide a framework for further understanding mass transfer processes in zircon

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: Design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from \u3c 1 day to ∼ \u3c span styleCombining double low line position: relative; top:-.5em; left:-.80em styleCombining double low line margin-left:-.7em 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5.

    Quantifying the Impact of BOReal Forest Fires on Tropospheric Oxidants Over the Atlantic Using Aircraft and Satellites (BORTAS) Experiment: Design, Execution and Science Overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajokull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical ( and physical) ages ranging from \u3c 1 day to greater than or similar to 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 mu m ( PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5

    Visualization of Diffusion within Nanoarrays

    Get PDF
    The direct experimental characterization of diffusion processes at nanoscale remains a challenge that could help elucidate processes in biology, medicine and technology. In this report, two experimental approaches were employed to visualize ion diffusion profiles at the orifices of nanopores (radius (ra) of 86 ± 6 nm) in array format: (1) electrochemically assisted formation of silica deposits based on surfactant ion transfer across nanointerfaces between two immiscible electrolyte solutions (nanoITIES); (2) combined atomic force - scanning electrochemical microscopy (AFM-SECM) imaging of topography and redox species diffusion through the nanopores. The nature of the diffusion zones formed around the pores is directly related to the interpore distance within the array. Nanopore arrays with different ratios of pore center-to-center separation (rc) to pore radius (ra) were fabricated by focused ion beam (FIB) milling of silicon nitride (SiN) membranes, with 100 pores in a hexagonal arrangement. The ion diffusion profiles determined by the two visualization methods indicated the formation of overlapped or independent diffusion profiles at nanopore arrays with rc/ra ratios of 21 ± 2 and 91 ± 7, respectively. In particular, the silica deposition method resulted in formation of a single deposit encompassing the complete array with closer nanopore arrangement, whereas individual silica deposits were formed around each nanopore within the more widely spaced array. The methods reveal direct experimental evidence of diffusion zones at nanopore arrays and provide practical illustration that the pore-pore separation within such arrays has a significant impact on diffusional transport as the pore size is reduced to the nanoscale. These approaches to nanoscale diffusion zone visualization open up possibilities for better understanding of molecular transport processes within miniaturized systems

    Preliminary survey of polychlorinated biphenyls (PCBs) in aquatic habitats and Great Blue Herons on the Hanford Site. [Ardea herodias]

    Get PDF
    Polychlorinated biphenyls (PCBs), constituents of insulating fluids used in electrical transformers and capacitors, were identified during a preliminary survey of waters, sediments, and fish from five locations on the Hanford Site in southeastern Washington State: Gable Mountain Pond, B Pond, West Pond, White Bluffs Slough on the Columbia River, and a pond on the Wahluke Slope. These aquatic areas are all within the foraging range of great blue herons (Ardea herodias) that nest on the Hanford Site. Of those waters that contained PCBs, concentrations were found to be somewhat over 1 ng/L, but less than 20 ng/L, and equal to or less than concentrations reported for other freshwater regions of the United States. The PCBs in sediments and fish closely resembled the chromatographic profile of Aroclor 1260, a commercial PCB mixture produced in the United States by the Monsanto Company. Concentrations of PCBs detected in the sediments were 10 to 100 times lower than those found in soils and sediments from other areas of the nation. Concentrations of PCBs in fat from Hanford great blue herons ranged from 3.6 to 10.6 ppM, while PCB concentrations in herons from other areas of the Pacific Northwest ranged from 0.6 to 15.6 ppM. Great blue herons at Hanford contained PCB isomer distributions closely matching that of Aroclor 1260; great blue herons from other locations contained isomer distributions indicating the presence of a mixture of aroclors. 21 refs., 13 figs., 8 tabs
    corecore