19,827 research outputs found

    An application of interactive computer graphics technology to the design of dispersal mechanisms

    Get PDF
    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems

    TRIDENT 1 third stage motor separation system

    Get PDF
    The third stage engine separation system has shown through test and analysis that it can effectively and reliably perform its function. The weight of the hardware associated with this system is well within the targeted value

    A Poincar\'e section for the general heavy rigid body

    Full text link
    A general recipe is developed for the study of rigid body dynamics in terms of Poincar\'e surfaces of section. A section condition is chosen which captures every trajectory on a given energy surface. The possible topological types of the corresponding surfaces of section are determined, and their 1:1 projection to a conveniently defined torus is proposed for graphical rendering.Comment: 25 pages, 10 figure

    Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards

    Full text link
    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T-violation whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.Comment: 4 pages, 4 figure

    Cross-Section Fluctuations in Chaotic Scattering

    Full text link
    For the theoretical prediction of cross-section fluctuations in chaotic scattering, the cross-section autocorrelation function is needed. That function is not known analytically. Using experimental data and numerical simulations, we show that an analytical approximation to the cross-section autocorrelation function can be obtained with the help of expressions first derived by Davis and Boose. Given the values of the average S-matrix elements and the mean level density of the scattering system, one can then reliably predict cross-section fluctuations

    Investigations on the hierarchy of reference frames in geodesy and geodynamics

    Get PDF
    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions)

    First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard

    Full text link
    With a perturbation body technique intensity distributions of the electric field strength in a flat microwave billiard with a barrier inside up to mode numbers as large as about 700 were measured. A method for the reconstruction of the amplitudes and phases of the electric field strength from those intensity distributions has been developed. Recently predicted superscars have been identified experimentally and - using the well known analogy between the electric field strength and the quantum mechanical wave function in a two-dimensional microwave billiard - their properties determined.Comment: 4 pages, 5 .eps figure

    How does a protein search for the specific site on DNA: the role of disorder

    Full text link
    Proteins can locate their specific targets on DNA up to two orders of magnitude faster than the Smoluchowski three-dimensional diffusion rate. This happens due to non-specific adsorption of proteins to DNA and subsequent one-dimensional sliding along DNA. We call such one-dimensional route towards the target "antenna". We studied the role of the dispersion of nonspecific binding energies within the antenna due to quasi random sequence of natural DNA. Random energy profile for sliding proteins slows the searching rate for the target. We show that this slowdown is different for the macroscopic and mesoscopic antennas.Comment: 4 pages, 4 figure

    Magnetic phase diagram of a frustrated ferrimagnetic ladder: Relation to the one-dimensional boson Hubbard model

    Full text link
    We study the magnetic phase diagram of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains as a function of the frustration parameter related to diagonal exchange couplings. The analysis is performed by using spin-wave series and exact numerical diagonalization techniques. The obtained phase diagram--containing the Luttinger liquid phase, the plateau phase with a magnetization per rung M=1/2M=1/2, and the fully polarized phase--is closely related to the generic (J/U,μ/U)(J/U,\mu/U) phase diagram of the one-dimensional boson Hubbard model.Comment: 4 pages, 2 figure
    • …
    corecore