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ABSTRACT

Modern high accuracy measurements of the non-rigid earth are to
be referred to four-dimensional, i.e., time- and space~dependent,
reference frames. Geoudynamic phenomena derived from these measure-
ments are to be desr—ibed in a terrestrial reference frame in which both
space~ and time-like variations can be monitored. Existing conven-
tional terrestrial reference frames (e.g. CIO, BIH) are no longer suit-
able for such purposes.

The ultimate goal of this study is the establishment of a
reference frame, moving with the earth in some average sense, in which
the geometric and dynamic behavior of the earth can be monitored, and
whose motion with respect to inertial space can also be determined.

The study is conducted in three parts. In the first part prob-
lems related to reference directions are investigated, the second part
dealé with the reference origins and the third part with problems
related to scale.

The approach is based on the fact that reference directions at
an observation point on the earth surface are defined by fundamental
vectors (gravity, earth rotation, etc.), both space and time variant.
These reference directions are interrelated by angular parameters, also
derived from the fundamental vectors. The interrelationships between

these space-~ and time-variant angular parameters are illustrated in
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hierarchic structures or towers, which make the derivations of the

various relationships convenient. In order to determine the above

parameters from observations using least squares techniques, model
towers of triads are also presented to allow the formation of linear
observation equations. Although the model towers are also space and
time variant, their variations are described by adopted parameters
representing our current knowledge of the earth.
After the translational and rotational degrees of freedom
(origin and orientation) have been discussed, the notion of a length,
scale degrees of freedom are introduced and studied under spacelike/
timelike variatioms.
According to the notion of scale parallelism, originated by
H. Weyl, scale factors with respect to a unit length are given.
Three~dimensional geodesy is constructed from the set of three base
vectors (gravity, earth-rotation and the ecliptic normal vector).
Space and time variations are given with respect to a polar and singular
value decomposition or in terms of changes in tramslation, rotation,

deformation (shear, dilatation or angular and scale distortions).
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Introduction

In order to take full advantage of high quality geodetic obser-
vational systems, such as lunar and satellite laser ranging and radio
interferometry to quasars, an appropriate terrestrial reference frame
is needed in which geodynamic phenomena can be detected and monitoired.
The importance of the definition, determination and subsequent mainte-
nance of such a terrestrial reference frame has been recognized by
many, although, so far, no satisfactory and comprehensive proposals for

its realization have been put forward [Kolaczek and Weiffenbach, 1975;
IAU, in press].

The ultimate goal of this study is the establishment of such a
reference frame, moving with the earth in some average sense, and whose

motion with respect to inertial space can also be determined.

In attempting a solution to the problem, a "zero base approach

is taken., Being fully aware of the large body of accumulated knowiedge

in the relevant disciplines of geodesy, astronomy and geophysics, we
conduct a step~by-step analysis of known concepts and relationships with

the purpose of establishing an unbiased and systematic foundation. In

many cases all we do is redefine and reformulate familiar concepts and

quantities as necessary. The earth and its environment are comnsidered

in their full complexity. Only at a much later stage do we intend to

make approximations and only after a quantitative analysis of their

effects. This paper which deals with the directional aspects of the

3
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problem will be followed by subsequent ones which will treat the prob-
lems of reference origins and scale, and also the question of how the

reference frame can be established and maintained in practice.

1. TFundamental Natural Vectors

Natural vectors are defined as such by their property of being
dependent only on some natural phenomena and consequently independent
of any artifacts such as coordinate systems, reference models, etc.
Consider a point P on the surface of the earth and another point Q which
serves as a target being observed at some epoch T from the point P. For

the epoch T we define a number of natural vectors at the point P, desig-

nated as the fundamental vectors.

6'— the Observational Vector. The light ray which travels from

Q to P (or vice versa) is generally a space curve due to the refraction
by the atmosphere. What we actually observe is the direction of the
tangent to that space curve at the point P. This tangent line is

defined as the observational fundamental vector and is denoted by 6:

~-I' - the Local Vertical Vectsor. The gravity wvector at the

point P is denoted by T. 1Its magnitude is the value of gravity at P.

We define the second fundamental vector - I', opposite in direction to T,

to be referred to as the local vertical vector.

Q - the Rotation Vector. Rotation is change of orientation of

a body or mass element with respect to some inertial system. It can be

found »y studying the space-like change of the velocity vector of mass




points with respect to inertial space. For example, if the space-~like |
change is zero, that is, constanu velocity at all points, there is no

rotation, but only a translation. Let V be the velocity vector with

respect to inertial space, then Q=rot V is by definition the rotation

vector, also called the vorvicity vector. Its magnitude is the instan-

taneous rotation velocity.

The definition separates reasonably rotation and deformation

since the earth is not rigid. rot V'just contains the antisymmetric

part of the tensor grad V, whereas the symmetric part describes defor-
mation. The earth rotation vector changes with respect to time due to
precession, nutation and polar motion and with respect to space due to

the deformability.

X - the Ecliptic Normal. The ecliptic is the osculating plane of

the space curve which the earth-moon barycenter is moving along. It is
referred to a heliocentric system with inertial orientation. The vector
X is the binormal vector of this curve. An approximation is the normal
vector of the plane being spanned by the heliocenter (considered as

fixed) and the earth-moon barycenter,

Basic Angular Parameters

Project the four fundamental vectors 3} - T; ﬁ; and X onto a
unit sphere centered at point P (Fig. 1). At any instant the four
points are related by five basic angular parameters as follows:

B altitude (observable)

A azimuth (astronomically observable)

$ latitude (astronomically observable)

5 . :




H  hour angle of vernal equinox

E obliquity of the eclitic

Fig. 1

The vernal equinc> T is defined by'$ = Q XX, The five angular para-
nmeters depend on the positions of the four fundamentil vectors. As the
vectors were defined in general to be space and time variant, it fol-

lows that the basic angular parameters are also space and time variant.

2. Reference Model

Analysis of a natural phenomenon is usually conducted through
the introduction of an approximation, a so-called reference model.
Using current knowledge of the phenomenon, a relatively simple model
may be defined so that a reasonably good prediction of the phenomenon
can be made for given space and time coordinates. In this section we
define a reference model for the earth, the fundamental vectors, and the

basic angular parameters defined in Section 1.

Reference Model of the Earth. The model earth is defined dynam~

ically (from the points of view of its gravity field and rotation) as a

6
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rotationally symmetric level ellipsoid with major semiaxis a and eccen~
tricity r. The ellipsoid rctates versus inertial space with uniform
velocity w about an axis which is slightly inclined to its minor
(figure) axis in accordance with a specified polar motion model. The
mass of the eilipsoid m is equal to the mass of the earth, and the
parameters a, e, and w are selected so that the normal (model) gravity
potential on its surface is constant and is edgual to the gravity poten-
tial on its surface 18 constant and is equal to the gravity potential
on the geoid. The normal gravity potential at a given point, external
to the ellipsoid, can be calculated from Gm, a, e, w, and the coordi-
nates of the point where G is the Newtonian gravitational constant
[Heiskanen and Moritz, 1967, pp. 64-67].

The orientation of the rotational axis versus inertial space
for a given epoch is calculated by the currently adopted models and
parameters of general precession and astronomic nutation.

Geometrically, the model earth has a rigid irregular surface:
the telluroid at a specified fundamental epoch [ibid., pp. 291-204]. Thus
distances and angles between model surface points are assumed to be time

invariant.

The Fundamental Model Vectors. We define the fundamental. vec-

tors of the model in a similar manner as for the natural case:
E' the observational vector is the straight line from the observing
point P tc the target point Q as affected by aberration and

parallax

outl
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=Y the local vertical vector is opposite in direction to the vertical
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gradient of the normal gravity field at P

E]

®i

The model fundamental vectors at a given epoch are related throush m.del

the modei rotational vector at point P

the vector normal to the mean ecliptic plane

angular parameters similar to the natural omes as follows:

B

model altitude

model azimuth

model latitude

model hour ungle of the vernal equinox
obliquity of the mean ecliptic

At a given epoch we can project on the unit sphere the natural

and the model fundamental vectors as shu.m in Fig. 2. The four dif-

ferences §q, 8Y, 8w, Ox are called disturbance vectors. The disturb-

ances in the basic angular parameters are

88 =B ~-18
So= A -
§¢ =0 - ¢
Sh=H-h

e = E -¢

The mathematical relationships between the disturbance vectors and the

disturbances in the angular parameters are given in Section 7.

.

.
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Fig. 2

3. Space- and Time-Like Variations of the Tundamental Vectors

The fundamental vectors defined for the natural case and for the
reference model vary in space and in time. The space~like variation of
V is the difference between V + dV at a second point P + dP, in the
neighborhood of P, and V at the same epoch. We can express the
space~like variation of V as its partial derivative versus the space
variable: 9V/3S.

In a way similar to the space-like variation, we define the
time-1like variation of V at point P and epoch T as its partial deriva-
tive versus the time variable: 8V/3T. The interpretation of the
time-like variation is complicated by the necessity of defining the
ineriial frame as the common reference for the two states of the vector,

i.e., V(T) and V(T + dT)"

fundamental vectors are placed in a hierarchy beginning with a'through

To simplify our treatment of variations, the




QF, 1, X, up to 1 which is concidered as any inertial vector. Thus, in

of time-variable rotation matrices.

disturbances of the four fundamental vectors.
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order to obtain the absolute derivative of a fundamental vector V

v &N
* ot

we have to differentiate both the coordinates of V and the base vectors
defined by the fundamental vector on the next higher stage. Therefore

we have to connect these base vectors with the inertial frame by means

These systems of base vectors and

Table 1

rotation matrices will be introduced in detail in the next chaptei.
In Table 1 we have listed certain phenomena causing the variations and

A point to be kept in

Sources of Variations of the Fundamental Vectors

T S . S

B S S TP U ST Sy

Funda- Space-Like Variations Time-Like Variations
mental
Vector Model Disturbances Model Disturb.. s
Q :g::?;}:;n refraction relative motion | perturbations in
of target motion of target
= itional deflections of
T pos . .
difference the vertical constant spin correction to polar
rate. model motion, spin rate
1a;' motion variations, tides,
— ] po mass redistributions
a . ocal
rotations luni-solar correction to luni-
precession solar precession
+ nutation + nutation
: X o -
| planetary correction to plane-
- recession tary precession,
i —_— - P ecliptic wobble
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mind is that certain phenomena associated with space-like variations of
a vector are not necessarily time invariant and vice versa, as, for

example, refraction or deflections of the vertical.

4. Natural and Model Triads

The fundamental vectors defined in the preceding sections can

Le used to define orthonormal vector bases, or triads. According to the

vectors used there will be natural and model triads.

i
!

Observational Trisd -~ El. The three axes of the triad El at

the point P and epoch T are defined by the vectors Q and -I' as

E13 = norm'a
E1?2 = norm [Q x (-]
il = 83 x @ ;

Local Horizon Triad - E2. The axes of E2 are defined by the

vectors ~I and f as follows:
523 = norm -I'
E22 = norn [0 x (-]

B2l = 23 x B2

Equatorial Triad - E3. The axes of E3 are defined by the vec-~

tors ! and X as follows:

3 -—

E3 norm

E3' = norm (@ x )

1

32 = E3° x B3

11
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Ecliptic Triad - E4., The axes of E4 are defined by the vectors

X and 1. At this gtage we introduce the inertial triad e which is a
space- and time-invariant orthonormal vector base. 1Its specific orien-
tation is not important at the moment and will be left undefined. Vec~

tor 1 is parallel to axie ZB of the inertial triad e. The definition of
E4 is as follows:

E@a = norm X

E&l = norm (i x X)

w42 = B2 x Bl
Note that axis 1 of E4 does not necessarily point towards the vernal
equinox as is the case with the ecliptic system used in astronomy.

The triads of the reference model are defined similarly, the

only difference being the substitution of the model fundamental vectors

q, -?; E; x for the natural ones. The model triads are denoted by
lower case letters el, e2, etc.).

The above definitions result in left-handed systems in El and
E2, and in angular parameters (altitude, azimuth, etc.) in accordance
with geodetic conventions (see [Mueller, 1969, pp. 32-42]). The triads,
based on the same fundamental vectors, could also be defined more
systematically (i.e., all right-handed), but in that case the angular

parameters would not comply with presently accepted conventions.

Transformation Between the Triads. We derive the orthogonal

(rotational) transformations between the sequence of triads by intro-
ducing three additional angular patameters, wl, wz, w3 (see Fig. 3),

which together with the basic angular parameters 0, B, ¢, h, and €

12

ot it 3 i B

DT TR PRIF TR



- ST T T L TR AT TR e T T e TR T e b2 SRRl A F AL J Sannt anilaliaskdhefinainites il athuat AN i

serve as parameters in the transformations. The sequence of transfor-
mations is as follows:

e4 = Rl(wz) R3(4w3) e

el = Rl(—e) RB(wl) e4

e2 = Ple(n/Z-¢) R3(h)e3

el = R,(1/2-8) Ry(0) e2
where Rj(u) is a conventional rotational matrix around the j axis by

an angle 4 (j =1, 2, 3) [Mueller, 1969, pp. 43-44],

Pk is a permutation matrix of the axis k (k = 1, 2, 3)
el

ei stands for the triad 212
—.3
ei

Fig. 3

The transformations are orthogonal so the inverse relations can

be obtained in general by reversing the order of the rotational matrices
and also the sign of the rotational angle. The transformations between

the sequence of the natural triads Ei (i = 1, 2, 3, 4) and e (the

13
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inertial triad) are the same, except that instead of the model angles
one must use the natural parameters A, B, ¢, H, E and also
Wl, ?2, W3 (the latter group for the transformation between the inertial

triad and E4),

5. Variations of a Triad

Since the triads are defined by the fundamental vectors, it is
obvious that their directional variations will involve a rotation of the
triad. Such variations are possible in three dimensions: 1) in space,
2) in time, 3) by the transition from the natural to the model funda-
mental vectors or vice versa.

Instead of analyzing separately the effects of these variations
and disturbances, we shall study in a general way the influence of the
variation of the fundamental vectors on the triads defined by them. It
should be relatively easy, once the general formulae are available, to
specify the kind of variation and the specific triad to which it
applies. The same holds true for the disturbances.

Let Z and D be two fundamental vectors (Z the "lower" and D the
"upper" one). The triad of which D/|D| ( = norm D) is the 3-vector is
called E* = [El', -}52-, E3.]T. The triad of which norm Z is the

—k

3-vector is called E being defined as
3%
E3

norm Z
—2% —
E norm (D X Z)

—1% 2% 3%
El =E2 XE3

The representation of D in both systems is:

D=, 0*, 0% 1 E

with the coordinates Dl. = Dz. =0, D3' = l-]_)—l, and, since the relation

|
1
g

.

P

e
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*
between E° and E is

-k e
E =R, (/2 - 9) Ry(M) E,

— * * *_ —%
D-[Dl,Dz,DS]E

* * * . . .
where 0'%, 0%, 0°*)T = R, (V2- 9 Ry DV, 027, D¥)T

= [—[5] cos &, 0, l_ﬁ[ sin ¢]
or D = ~-|D| cos ¢ El* + [B| sir. ¢ 53* .

- —
The fundamental vector Z is in the E -system:

—~— %* 7% % 3%
7 = 2%, ¥, 2N B

* * *
with the coordinates z1® = z2" = 0, z° = lz|,

or 7= [Z| B

The variations of D and Z are

I ap?, an] B

* * E
=[le,dD2,dD3]E

dD = [dD

* L] . 1]
with [dp? cos A sin®dD' + sin A sin® dD% - cos ¢ dD>

* . .
dD2 =]~ sinA le + cos A dD2

* . . .
dD3 cos Acos ® dD2 + sinAcos $ dD2 + sin ¢ dD3

— % * o

iz = [az'*, az%*, a2>"1 %

L

Now let us construct the new base vectors E

tion of the fundamental vectors D and 7 =D + d—D- and 7 + dz.

15
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—3% —3% — -
E3 + dE3 = norm (2 + dZ)

* * * K =k
-norm{[dzl,d22 ,z.3 +dz3]E}

*
dz =%
= ["""370 dzs*:ll E
Z

) - Jr— — — ——
Ez + dE2 = norm [(D + dD) x (Z + dZ)]

* 3 * * %* | J—
= norm {[dD** (23" +dz%%) - ®3* + D *yaz?*] B +
% * * % % * % —2%
+10> a0y az® - o +apt™) (3% 4423 12T +

* * * * * 3%
+ [(D1 +dD1 )dz2 - dp? azt ] E3 }

X 3% * L]

- -2 p¥er® a4
* * % ? ’ *
pl*  pl*z3 z3

—1% ]+

E” + dE 2

-0 % - 3 — —3%
- B & dBY) x BF + B
* * * *
o, 902 p¥ar gt o
’ x * 3% * *
pi*  pt*3 73

Collecting the new base vectors in one column matrix, we obtain
1% 1%
El + dE1

—2% 2% I ¥ —*
E2 + dE2 =E +dE = (I + Q) E

—3% -
2 4GB

where the antisymmetric matrix

i *x 2% % |
0 dD2 D3 de le
T* * 3% *
D D1 Z3 23
% Ok *
0o a® p’taz? 0 _ az?
* * 3% *
Dl D1 23 Z3
*
le* de 0
* *
, ! z3 23 i
% 16

e e i

e datncidat S i
e e daa.



is the Cartan matrix Q [Grafarend, 1977, pp.159-160]. Expressing the

elements of the D-vector in terms of the E'-frame we get

—
1‘
sinAsec‘b———dP. 4 1%
0 D] -4z
2 |z]
. 2
- cosAsecQJTT—-i- Lan¢T:|—-
10
-sin!\sec@—-—-—- ok
o D] o _az
k3 . * —
ap? dz2 Iz
+ cosAsecd)—r-:r~ ta | |
*
azt” az” .
z 1Z]

Now apply the general expressions derived above to any of the geodetic
triads. For example, by identification of D with Q and Z with —F, of

dD with polar motion and dZ with a change of the vertical direction, we
find the influence of polar motion and of a change of the vertical onto

the orientation of the horizontal system. A and ¢ are then longitude

1- 2°
and latitude, -dfl_)_---' = x and —— = ~y the components of polar motion,
D] D]
azt* az?*
—l—-—‘—- = kl and I'" = k2 the angles of vertical change in north-south and
Z Z

east-west directions respectively. In order to get the horizontal sys-

tem north-oriented, some signs have to be changed. Thus we finally

obtain

17
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2 3

del = (-ginAsec®x - coseAgecdy + tand kz) E2° + k, E2

dE2? - (sinAsec® x + cosAsecPy ~ tan?d k2) 2l + k, 23

3 1

=2
- k, E2

dE2” = —klE2 2

There are many similar applications of the general formula, for
instance the influence of a change of the vertical and a motion of the
target on the observational triad, or the dependence of the equat. ..l

system on planetary precession, luni-solar precession and nutation.

R Ak e

While in the first two examples the motion is relative to an earth~fixed

obgerver, it is described relative to an inertial system in the latter
one. The general formula is valid for both cases.
We can interpret the Cartan matrix as a rotation matrix of

*
three differential Cardan angles about the three E -axes, the first

dZZ* 1% le‘
angle being - -————, the second —— and the third sinA sec ¢ —— ~
|z] |z] D]
2. 2%
—-cos A sec @-CILET— + tan ¢ [E] . Later on we shall call them Ti in the
D Z

first level (observational triad), \)i in the second level (horizontal
triad), Ei in the third level (equatorial triad) and ui in the fourth

level (ecliptic triad), i = 1,2,3.

6. The Commutative Diagram of Triads

To obtain a better insight into the interrelations between the
various triads, we will construct three-dimensional structures to be
referred to as the E(e) Towers or the Commutative Diagram of Triads

(see Fig. 4). Each point in the diagram represents a certain triad

18
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EN2,2) El(1,2)
el(-glnl- —-?L('L'Z)”O.-"‘ *
”
7 |~ A, B
observational -
level
H,®
local
horizon E2(1,0) |
level e3 ('@4, ee
s
' )% 3 Y, E
equatorial " e3(l,l):"..
level
ecliptic v
level 7~

: @
inertial triad W, ©

s ¢ cmmy ¢ emeu o . -

space axis

Fig. 4
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according to the lubel attached to it. The straight lines between the

points represent orthogonal (rotational) transformations between the

respective triads. The overall organization of the diagram is as fol-

lows:
E-tower tower of the natural triads (solid lines)
e~tower tower of the model triads (dashed lines)
savels

1, 2, 3, 4 - according tc the type of triads,
i.e., observational, horizontal, etc.
space~like the lines parallel to the space axis represent
variations
space~like variations of the triads
time~like the lines parallel to the time axis represent
variations
time-like variations of the triads
disturbances the diagonal (dotted) lines which run on level i
between an Ei triad and the corresponding ei
triad. These are the only connections between
the E-tower and the e-tower and represent the
disturbances explained in Section 2.
The diagram thus represents all triads, their space- and
tire. !ike variations, and model disturbances at a single point P. In
order to identify space~ and time-like variations, we introduce two
indices (j, k) which follow the symbol Ei or ei of the triad. Both j
and k can be 1 or 2, where index j = 1 stands for triads at P and j = 2
at P -+ dP. In a similar manner k = 1 stands for triads at epoch T

while k = 2 at T + dT. Thus the index (1, 1) indicates the situation at

P at epoch T, (2, 1) is after a space-like, (1, 2) after a time-like

20
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variation; (2, 2) represents the situation when both space- and

time~like variations affected the trial (1, 1).

Interleve! Transformations. In Section 4 we derived the inter-

level transformations along a typical sequence Ei(j, k), i = 1,2,3,4,
Fig. 4 shows the pairs of parameters involved in a transformation
between two adjacent triads along a column of the tower: A, B; H, ¢;
etc. As these interlevel parameters are space and time variant, it is
obvious that they carry j and k indices matching the column of triads.
We have identified the various parameters and the respective triad
columns of the tower struzture where they apply in Table 2, For com-

pactness of representation, denote by 0 the vector of model angular

parameters as follows:

GT = [a, B, h’ ¢) €, wl’ "pz’ "\b3]

Following the notation introduced in Section 3, we denote space varia-
tions by 90/0S, time variations by 00/9T, disturbances (natural minus

model) by 60, gpace variations of disturbances by 9(80)/9S, and time

variations of disturbances by 3(8c0)/9T.

[N ——
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Table 2

Interlevel Transformations

Ox Trunsformation Parametsrs Tower Column
ol o ei 1,1)
eC
(e c-i--g-s- ds ei (2,1
X4
oa] © *3T dT ei(1,2)
30 9S8
(<A o'+asds "a'r dT ei (2,2}
sl OC +0 Ei (1,1)
ge| Sc+o+ 29 +3-(°—°-1ds Ef (2,))
S o8
20, (6
o} So+0 +[a,r+a,r ]d'r Ei (1,2)
20, 2 30, 39
.Ca ﬁa+c+[as+as ]68 *[a'r*'a'r ]dT Ei (2,2

T Y ST

Inlevel Transformations. We have defined in Section 5 the dif-

ferential inlevel transformation vectors. In Fig. 5 we can see a total
of 12 such vectors for level one. As the changes in the space and time
variables dS and dT are differential and the diagram is commutative,

there are seven independent conditions to be fulfilled:

Al
]

6=T1 ToT T tTy3tTs

{ T, =T, Tyt TTet Tt Tg

| TgET, Tyt Tyt
Ty = Ts

22
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EN2,2) g 2 —pEI(1,2)
F“ ..’,' U o...?lo

Ty .
‘GIE,E)" = Rer(1,2) |

time axis

Y W .

' %! 17, Ts
I I :

..&- il --A,el(l,l)
le.-.. el(2,1) ‘Y T H
,:..' _ '..\ {
.‘. e T4 ..o'
ElI(2,]) & S EI(1,])
g L] . .
space oxis
Fig, 5

and therefore only five {ndependent %; vectors left.  These represent
the tollowing variations In the triads of level oned
i.l apace-like
) ( varfat fons of model triads
1y time~1ike

T1 disturbances

ké gpace-1like

variat fons of natural tviads
time-like

!
i

The varfous inlevel transformation parameters (1, v, ote.) can be

expressod as functions of the relevant space- and time~1{ke vaviat fons

of the fundamental vertors as shown in Section 5.

23
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7. Variations in the Basic Angular Parameters as a Function
of Variations in the Fundamental Vectors

We are faced with a large number of transformation parameters
required to relate the various triads in the towers. we w.ove already
taken a step towards reducing their number in the inlevel transforma-
tions. We will complete the reduction process by expressing the varia-
tions of the basic angular parameters (interlevel transformations) as a
function of variations of the fundamental vectors and show that tho
transformation between any two triads in the towers is de; »ndent on the
variations of the four fundamental vectors only.

Following ideas in [Crafarend, 1977, pp. 207-212), in Fig. 6
we have four triada which together form a closed loop of a commutative
diagram, This loop 18 used as a typical example, and therefore the
subscripts of T and v (which are ?5, V., i.e., disturbances) are not

indicated. From previous sections we have

e2(1,1) = Ry(a,B) el(1,1)

E1(1,1) = R,(T) el(1,1)

E2(1,1) = RC(G) e2(1,1)

E2(1,1) = RE(a + 8a, R + 8R) F1(1,1)

where RE(G,B) - R3(—a) RZ(B - 1/2), Eulerian rotation matrix
Ry (T)
Ry(V)

R3(T3) R2(12) Rl(rl) and

) ! $
R3(v3) Rz(vz, Rl(vl), Cardanian rotation matrices

Thus

RC(G) e2(1,1) = RE(a + 8a, B + S6R) E1(1,1), or
%@3%&&)-Rﬂa+m,6+w)%ﬁ)

24
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21,1 2 (1,1
e o 752( )

> < ‘
‘ a+3a,
B+38

‘;

;l

el(1,N" e,

Fig. 6

From here we can arrive, by patient algebra, at the following expresa=-
slons:
Sa -cogR 0 st | 0 0 -1
- T+ \Y
SR 0 -1 0 -sina  cosa 0
Treating in a similar way the other loops of the columns Fi(1,1),

ei(1,1), we get

[ Sh -cosy 0  -singd 0 0 -11
- v+ 5
A Q 1 4] -sinh cos h 0
Sy 0 =~-sine  cose 0 0 -1
o« F o+ N
L St -1 0 0 onswl sinwl 0

Substitute into T, V, &, |t their equivalents, perform the multiplica-
tions, and rearrange. The results are summarized in Table 3. The
matrix presented is actually the matrix of partial derivatives of the
basic angular parameters vs. variations of the fundamental vectors.
should be obvious that the matrix would not change if we considered

space-1ike variations or time-like variations instead of the
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disturbances in the derivation as long as Fig. 4 is a commutative dia-
gram. Table 3 represents the situation in the model. For the natural

parameters, the relationships are, of course, identical.
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Appendix A

Differentials of a Compound Rotation Matrix

Preliminaries

Analytical expression for the differentials of an orthogonal
matrix R which represents a sequence of elementary rotations is the
subject of this Appendix. Rotation matrices Ri(e) are used in ortho-
gonal coordinate transformations as shown in [Mueller, 1969, p. 43]

where 6 is the angle of rotation and 1 is the axis about which the

rotation is performed.

The differentiation of a rotation matrix Ri(e) with respect to

the angle 6 is obtained by pre- or post-multiplying the Ri(e) matrix by

a skew symmetric Li matrix

BRi(G)
55— = L;R;(8) = R (O)Ly

The Li matrix is defined as the i layer of the skew-symmetric e

13k sys=
tem as shown in [Lucas, 1963]. The rotation and Lucas' matrices are

1 Q 0 cos6 0 -sinf cosf sing 0

R1(6)= 0 cosf® sind R2(9)= 0 1 0 R3(9)= -sinf cosb O

|0 -sinf cosf sin 0O ~0sb 0 0 1

o
o
o
o
o
4
[y

0o 1 0

L=|0 0o 1 L,= [0 0 0 L= |1 0 0

o -1 o0 1 0 0 o 0
28
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A rotation matrix Ri(e) or a product of two or more rotation mat-

rices are orthogonal 3 x 3 matrices with the following two properties:

(i) The determinant is equal to one.
(i1) The inverse is equal to the transpose.

The above properties of a 3x 3 orthogonal matrix A can be utilized for

deriving the elements of the adjoint matrix of A, As is well known the

adjoint of a nonsingular matrix (the transposed matrix of its cofac-

tors) divided by its determinant is equivalent to its inverse
adj. A -1

-%KT~ A

According to the properties of A as stated above, i.e.,

Al =1 and At = AT

one has

adj. A = AT

or explicitly

|:4

11 %21 %31

21%33789183) (8)8557a3,8 9@y ay4ma) 58, )=lay, 3y, a

(8)583578398)4) ~(a),853-8,484,) (a) 58y 378,58, 4)| |2
adj Aw=|~(a

0

32

[

a

(ay)89,=859841) ~(8)1849=8,584,) (8178997875871 )] [215 355 844

Use the above result in deriving an expression for the matrix product §

S = ABAT
where A is a 3x 3 orthogonal matrix and B is a skew symmetric matrix

29
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811 %12 %13 0 by -b,
A=lay) ay ay B= b 0 b
33) 835 854 b, =b; O

Perform the multiplication, regroup to obtain

(a)28737825813)0) (23381578398, 3)0)
0+ (3y8137353817)b, + (agya;3-a343,,)b,
+ (ay,a),-258;,)b, + (agya;y-a3;2),)b,
0T 0 (a338),-a358)3)by
+ (a3y8y5-a33a5,)b,
+ (agyay;-a3;8,9)by
skew~symmetric 0

Using the property of the adjoint of an orthogonal matrix (A),

0 (ag bytagobytagqby) = (ay byta, bota,sbs)
s = 0

(aj bytay b, +ay sby)

skew-symmetric 0

Differentials of a Sequence of Rotations

The compound rotation matrix R which represents a sequence of ele-

mentary rotations Ri (Gj) is defined as their product
J

R=R, () ... R, (6,)R, (0,)
in n 12 2 il 1
Derive an expression for the partial derivative of R with respect to

one of the angles ej where § = 1,2,...,n and in a form which is con-

venient for programming on a computer.
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Partition R into three parts

R=A Ri (6,)B

3 3
where A, Ri (63) and B are orthogonal.
]
%%— - ARy (8L .
] .‘)
Ly

B can be represented as BQi where Qi is a skew symmetric matrix with
elements which are a function of B

T
q = B'L,B

Using the expression for S as developed earlier for each of the three

cases 1 = 1,2,3 one gets

0 b3 =Py 0 byy by, 0 byy =by,
Q= fby3 0 byl Qmibyy 0 by} Qy=-byy O by
byp Pyy O byg by O byy by O

The resulting partial derivative of R is thus

R
a8, T ARy, PR TRy

The variation of the R matrix as a function of variations of the

Bj angles is obtained now easily from the above results

oR

3R R
6R=—a—é—se +... & 68y + o T 50,
n
R=R* ¥ Q, 66, =R« Q
j=1 1y 3
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where Q:l. is a function of the i row of the product of the j ~1 ele-

mentary rotation matrices to the right of Ri (ej).
3

Differentials of Cardanian and Fulerian Rotation Matrices

There are two special types of compound rotation matrices which
have been used extensively in deriving the various relationships in the

E-tower:

Cardanian rotation matrix
R.(@,8,Y) = Ry(YIR,(B)R, (@)
and

Eulerian rotation matrix

Using notation and formulae developed in the preceding section one
obtains for a Cardanian matrix,
cosBcosY cososiny + sinasinfcosy sinasiny - cosasinfcosy

RC = |-cosBsiny cosacosY - sinasinBsiny sinocosy + cosasinfsiny

sin B -~ sinocosp cosacosf
oR oR oR
C C
T " Rely 5 35 = RyOIRBILR (@) 5 528 = LR,
0 0 O 0 sinc -coso 0 cosoacosB sinacosP
Qa- 0 01 QB- sina O ] QY- -cosocosf O sinf
0 -1 0 coso, O 0 -ginacosf -sinf 0

6Rg = Rg * [Q8, + Qg8 + Q8 1 = R 2

32

e en il




e — - (g

0  s8inadB + cosacosBEy

~cosadf + sinacosBSyY
Q = 0 8o + sinfEY
skew symmetric 0

The elements of the {); matrix are differentially small, thus
Re+SRe=Rp * (IHY)

-'RC(a,B,Y)RC(6a+sinBGY,cosaGB—sinacosBGY,sina68+cosacosB5Y)

The derivation of a variational equation for the Eulerian matrix is as

follows:

costicosYsinf - sinocinY  sinGcosysinf + costsiny ~cosfcosy

RE" -cosasinysinf - sindcosY -sinasinysinf+ costcosY cosBsiny
cosacospB sinacosB ginB
ORg ORy Ry
T .
T " Rpla b ag T Ry(R (VIR () 5 gy~ haRy
01 0 0 0 cosd 0 sinf -gintcosB
Qas -1 0 0 QBR 0 0 sino QYS -sinf 0 cosacosf
0 0 0 ~cosa -sino 0 sindcosB ~-costcosBf 0

SRy = Ry * [Q8, + Qgfp + Q8.1 = Ry = &

0 da + sinBdy cosadf - sinocosBEy

Q. = 0 sinaéB + costcosBEY

skew symmetric 0

33
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Ry OB = Ry (4)

- Rz(a.B »Y) °Rc(s'inaGB-HzomcosBGY,-couuéBﬂinacoaBGy, Sa+sinfly)
Note the similarities between the Qc and QE matrices:

Q. =@ Q =0 Q. = -0
Ci1a Eyg Ca3 12 €3 Lig

34
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Appendix B

Differential Relationships Between Model and Natural
Triads, Vectors and Angular Parameters

Derivation of the differential relationsnips between model and

natural quantities as presented in their final form in the main text are
the subject of this Appendix. The results obtained in the last section
of Appendix A are used extensively. For the sake of completeness, cer-
tain formulae given in the main text are repeated.

Levels 1 and 2

el(1,1) O :  E1(1,1)
>
o, B l a+ 8o, B+3B
v
e2(1,1) & A ® r2(1,1)
>
Fig. B.1l

The disturbances (60,6B) of model azimuth and altitude respectively as

well as the components of the two rotation vectors TT = {Tl Ty 13],
vT = [vl vz v3] are regarded as differentially small angles sp that the

Cardanian rotation matrices RC(T) and Rc(v) tan be written as follows:

1 Ty T, 1 vy -vg
R (D) = |1, 1 1 R,V = |{-v, 1 vll
T, =T, 1 Vo Vg IJ
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From the commutative diagram in Fig. B-1,

E2(1,1) = R,[ - (a+6a) IR, [ (B+8B) ~ m/2]E1(1,1)
E1(1,1) = Rc (t) el(1,l)

E2(1,1) =R _(v) e2(1,1)

e2(1,1) = Ry(~a) /Ry (B-1/2) el(1,1) = Ry, el{1,1)

sinfcosa -sina cousBcosa
where Rlz = | sinfsina cosa cosfsina
-cosf 0 sinf

Using the formula for variation in R 5 as derived in Appendix A,

1
E2(1,1) = R12(1+912)E1(1,1)
where

{0 0 -1 0 -sinf O 0 -sinféa -8R

le= 0 0 O0}]68 + |sinp 0 cosB]|ba = |sinRSa 0 cosfda

1 0 0 0 -cosB O 88 -cosRSo. O
From the four equations above and substituting the expressions for 6R12,

T
R, v) = R12(1+912)Rc(‘r) R)y

1 Ty = sinBda =T, ~ 88
“ngg | =T, + sinfba 1 Ty + cosBda R'{z
Ty + 68 -'rl -~ cosfda 1

R12 1s an orthogonal matrix and so the development for S in Appendix A

can be applied:

36
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"1 v3 -vi” i —cosB(Tl+cosBGa) -sinBsina(t1+cosBGa)-cosa(r2+68ﬂ
1
+sin8(13-sin85a) —cosBsina(TB-sinBGa)
-v3 1 vl - 1 sinﬁcosa(11+c0366a)—sina(rz+66)
+cosBcosa(13—sinBGa)
v, =V 1 skew symmetric 1 .

from which it follows after regrouping:

vl 0 -sina sinfcosa -sino cosfcosa Ty
Sa

v2 = 0 «cosof-* + | sinBsina coso. cosfBsinay T2
éB

Vq -1 0 -cosf 0 sinfp Tq

The last expression in a compact notation is

Sa

"'Alz[ ]*RlzT

&b

M T [ ] E 3
Noting that A12 A12 I and also R12 being orthogonal, the last
T

expression premultiplied by Agz and R12 respectively yields:

da
T T
[ ] = AV - A12R

T
S8 12 12
éa.
T T
T=R.,, V- R,.A [ ]
12 12712 88

or explicitly

Vi T1
Sa 0 0 -1 -cosfB O sinf
Lo L
] -gino cosa O 0 -1 0
V3 T3
37




[ Tl -cosB O sinfcosa sinBsina -cosB vl
Sa

'rz - 0 -1 [5 ] + -ginq CO80. 0 v

L ; 2

Ty sinf 0 cosBcosd cosfsina  sinf V3

Levels 2 and 3

The same approach ig followed in the derivation of differential
expressions for levels 2-3 using the commutative diagram in Fig. B-2.
The disturbances 6h, 8¢ of the respective model hour angle of vernal
equinox and latitude are regarded as differentially small angles as

are the components of ET = [El £2 63]. The derivations are given with-

out further comments.

e2(1,1) O Y WD E2(1,1)
>
h,¢ h+Sh,d+ &¢
\%
e3(1,1) O - —® 5301,1)
Fig. B-2
E3(1,1) = PyRy(h+Sh)R, (M/2-4=64)E2(1,1) = R,q(1402,3)E2(1,1)
E2(1,1) = R (v) e2(1,1)
E3(1,1) = RC(E) e3(1,1)

e3(1,1) = P Ry (h)R,(1/2-9) e2(1,1) = Ryze2(1,1)

where Pl is the permutation matrix for the reversal of the first axis

[see Mueller, 1969, p. 43],
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- sinfcos h ~-sin h cos¢cos h
R23 = | - gindsin h cos h cos¢sin h

cosd 0 sing

and

0 0 1,4 . 0 sinp O 0 singéh  &¢
923 =1 0 0 0S¢ + {~-sinp O cosd| Sh =| -ginpéh 0 cosdSh

-1 00 0 ~cos$ O - &8¢ -cos¢Sh 0

From the set of four equations above

0 Va + sin¢éh Vv, + 6¢
= T
R(E) =I+R,, 0 v, + cos¢sh | R,,
skew symmetric 0

Due to the permutation matrix P, the determinant of the R

1 23
T

matrix is -1. Accordingly Adj. R23 -R23.
Skipping a few obvious steps the following is obtained:

£ 0 -sinh sindcos h sin h  -cos¢cos hyv

1 oh 1

EZ =i 0 cosh [ ] +{ singsin h -cos h =-cos¢sin h v,

8¢
£3 L-1 0 ~cosd 0 ~sing Vs
Sh
gBA o{ - R °« \
23 86 23
39
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Premultiplying as in levels 1 and 2 and regrouping

&1 V1
Sh 0 0 -1 -cos¢p 0 =-sing
{ = 52 + [ } \,2
(o) ~gin h cosh 0 0 1 0
53 V3
v -cosp O singcos h  singsin h -cosd 2
1 sh 1
Vo | = 0 1 [ } + sin h -cos h 0 . 52
8¢
Lvs -sind O ~cospcos h ~-cospsin h -sing Lg3

Levels 3 and 4

As in the upper levels the disturbances Gwl and 8¢ are differen-
tially small angles as are the components of the u rotation vector.

The derivations are presented without comments.

e3(1,1) © & S 9 E3(1,1)
V,e xp1+6tpl,e+de
v V
e4(1,1) O— “> @ 1r4(1,1)
Fig. B-3

E4(1,1) = R3(—wl-éwl)Rl(e+6e)E3(1,1) = R34(I+934)E3(1,1)
E4(1,1) = R (u) e4(1,1)
E3(1,1) = R (E) e3(1,1)

e4(1,1) = Ry(-y;)R (€) e3(1,1) = R,, e3(1,1)

where

40
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cosw1 -ainwlcoss -sinwlsine

R34 = sinwl coswlcose coswlsine
0 -sine COSE
and
0 00 0 =-cose =-sine 0 —coseéwl
934= 0 0 1{8e+|cose O 0 6\!&* cose&bl 0
0 -1 0 sine 0 0 sineéwl >

From the set of four equations above,

rO EB—COSGGwl -Ez—sinedwl
‘ T
R, (W) = 1+R34L 0 £y + 8 | Ry,

skew symmetric J

The resulting three matrix equations are:

[ul 0 cosw1

Sy
My | = 0 simp1 [ae

~sinedy
Se

Lua -1 0 0 ~sine cosE

80
M= Ay [Ge] * Ryt S

] 0 0 -1 0 ’—sine COSE
1
de cosw1 sinwl 0 -

41
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] + sinw1 coswlcoss coswlsins g

coslpl -sinwlcose -sinwlsine El
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El 0 1 & cos, siny, 0 My
= 1 - - L]

E9 sine O [(Se] + simplcose coswlcose sine Uy

53 -cose 0 -siny,sine coewlsine cosg g

Combination and Summary of Differential Relationships

In this section the formulae derived in the first three sections
of Appendix B are combined with the results presented earlier.

For compactness adopt the following notation:

’Ga] §h 8
én = ;6k=[ ];6){*[ ]
L5g 86 8¢

" 8q §(~y) Sw Sx
8q = 1]; §(=y) = { 1] 3 Sw = [ 1] ; Ox = [ l]

where E} —?} m;'; are the model fundamental vectors.

The matrix Di stands for the partial derivative of vector i with respect

3

to vector j. Earlier we have derived the following differential expres-

sions:

= D . o,
én Dv \:-i-D_r Tl V

A
"

DY + &n + D" o T
] T

k

Sk =D_ + E + Dv * Vv

£ . £,
I)k 6k+D\) v AV

vy
L}

k
g k g

6x=ﬁ-u+nx-5u

L Ho,
. DX 6 + T E E

g X !

and the following:
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e ——

F-f; ey 3
i
[

T T
= D + D' 8(=
T ch _Y(Y)

- Voeo v
v D_YG( Y) + Dm Sw
- 13 3
13 D, 6w+nx 8x
U= D: x

Substituting the second into the first group of equations

o T neT Vel NV
én = Db 8q+ (DTD_Y+D3Q_7)6( v) +00D &w

- Vos(- v ko 3
Sk D\“;D_YS( Y) + (Dtnwm'gbw) 6w + Dlng 6x
oX = D’E‘Df) fw + (D§D§+D;(D::)6x

Multiplication of the D§ matrices followed by rearrangement of terms

results finally in Table 3 in the text.
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Appendix C

Applications of the Differential Relationships

Here examples of the application of some of the relationships
presented in Table 3 are given. The examples have been selected from
two important areas of analysis, i.e., space-like and time-like
variations of the fundamental vectors and their effect on variations of

the basic angular parameters.

Space-like variations. Fig. C-1 is the disturbance column of the

E-tower over the first three levels. The disturbances, i.e.,

the differences between the natural and the model basic angular para-
meters (o, B, h, ¢) and fundamental vectors (q, —_‘Y-, w), are dif-
ferentially small angles. The pairs of orthogonal components of 89,

6(-?) and 6w have the following interpretations (see Table 1):

qu refraction in altitude

6q2 refraction in azimuth

6(-7)1 meridional component of the deflection of the vertical
6(-Y)2 prime vertical component of the deflection of the vertical
6wl nonparallelity of the rotation axis in (ecliptic) longitude
6w2 nonparallelity of the rotation axis in obliquity

From the first two rows of Table 3,

b4
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[Ga] { 0 secB][qu] sinatanf tan¢-cosatan8} [6(—7)1]
- . + +
;) -1 0 Jisq, [ coso, sino 6(-v),

sin h sec¢ =-cos h secd Gwl
d e

0 0 Gwz

Thus the above equation relates possible errors (corrections)' in refrac-
tion, deflection of the vertical, and parallelity of the model (ellip-
soidal) rotation axis versus natural rotation axis to those in azimuth
and altitude. Assuming SE to be zero and with a slightly different
notation, we have the generalized Laplace conditions as shown in
[Grafarend and Richter, 1977].

The above set could also be utilized directly as linearized obser-
vational equations where 8o, 6B are the respective (observed minus

model) azimuth and altitude and 8q, 6(-Y) and Sw are the unknowns.

Time-like variations. Fig. C-2 shows the time-like variational

column of the F-tower at the second, third, and fourth levels. In this
case we are considering natural angular parameters (H, &, Wl E) and
their values 8T later, demoted by H”, ¢, ¥7, and E”. In accordance
with Table 2, the expressions for the time-like variations of, e.g.,

the parameter H, are

- oH
H H+ 3T ST

N 3h 3 (Sh)
h + 6h + £ 6T + £7=0L 6T

Subtract the corresponding model quantities and rearrange to obtain
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el(1,1) Qo——% 9 E1(1,1)
a,B | | o+ba, B8
\ v
E2(1,1) df > ® r2(1,1)
h,d l h+Sh,¢+5¢
| !
e3(1,1) © __i ® E3(1,1) i
Fig. Cc-1 é
v
E2(1,1) ? — ? E2(1,2)
H,9 l | H,9 4
‘L - v 5:
4 p
E3(1,1) —= * E3(1,2) .\
¥poF \I/ J/ ¥oF
E4(1,1) @ ~L 4 E4(1,2)
Fig. C-2
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Similar notation is adopted for ¢, -y, w, and x. Now apply the third

and fourth rows of Table 3 and write the following expressions:

[%h} N [0 sec¢][%(-y)l] . [cote-Ftan¢sin11 ~tan¢cos h" ”?wI]‘+
&¢ 1 0 6(-7)2 cos h sintL<L6w2
. [—cosececoswl -coseCESinwf ’%xl]
L 0 0 4~6x2
where
éh variation in the disturbance (natural minus model) of the
hour angle of vernal equinox
é¢ variation in the disturbance of the latitude

é(-?) effect of local (plate) motions plus differences (natural
minus model) in polar motion and spin rate

Sw difference (natural minus model) in luni-solar precession
and nutation

8x difference in planetary precession

The above equation thus relates errors (corrections) in earth rotation
(prrcession, nutation, polar motion, spin rate) to those in latitude
and hour angle (longitude + Greenwich sidereal time). It could also be
utilized as linearized observational equations where éh, é¢ are the

observables and §(-Y), 6w, and &x are the unknowns. ;
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INVESTIGATIONS ON THE HIERARCHY OF REFERENCE FRAMES

IN GEODESY AND GEODYNAMICS

PART II: SYSTEM OF ORIGINS: THE P-TOWER

by

Haim B. Papo
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1. Introduction

The fundamental vectors at a point on earth, their reference
model, and the commutative tower of triads~-the E tower--were intro-
duced and studied in [Grafarend et al., 1979] as a first step in our
investigation for reference frames in geodesy and geodynamics., Time
was defined as the fourth independent coordinate, cnd an attenpt was
made to distinguish between natural--observable--quantities and their
models corresponding to present day knowledge. The concepts presented
there (vectors, triads, parameters, transformations, variations, etc.)
were only directional. Distances, coordinates, linear velocities, scale
and deformations were not considered. Consequently, no metric data of
any kind could be analyzed with the help of the E~tower alone.

In the following, we introduce the tower of origins (P-tower)
which complements the directional E-tower in defining concepts, identi-
fying parameters, and analyzing interrelationships and variations of
positions and distances between points in space and time. The approach
follows closely the one employed in [Grafarend et al., 1979]. The
distances, coordinates, linear velocities of the various points,
regarded as natural (real) quantities are paralleled by a set of models
of the same in a one~to-~one correspondence. As in the E~tower we are

interested in the difference between the real and the model quantities

to be represented subsequently as functions of a selected set of param-

eters. The two towers are closely related in sharing certain concepts
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and parameters and, in fact, it would have been impossible to present
the P-tower without repeated reference to the E-tower.

The tower of origins (P-tower) presented and studied in the fol-
lowing chapters should not be regarded as a problem-solution-procedure
type of report. It is rather an attempt to provide a method of analy~-
8is, to lay down foundations, to create a consistent and logical
language and nomenclature for a subsequent study and solution of speci-
fic problems. Many of the results in terms of concepts, relationships
and variations may seem trivial and not necessarily new. But this is
exactly the purpose of this report, i.e., to redefine, reorganize and
systematize certain aspects of our present knowledge and understanding
of the geometry, kinematics and dynamics of the earth without resorting
to too many basic assumptions and hypotheses. We have tried to identify
and clarify parameters and phenomena which apply to directions (E-tower)
as well as to positions and distances (P-tower) between points in space
and time. The creation of this common basis is essential for our
future treatment.of specific problems where we should be able to use as
necessary a combination of concepts and formulae derived and associatea
with either of the two towers.

The ultimate goal of our studies of reference frames for geodesy
and geodynamics is the establishment of a conventional terrestrial
coordinate system (CTCS) through the combined analysis of a selected set
of high quality observations (laser ranging, radio interferometry. etc.).
The CTCS should represent in some average but nonetheless well-defined
manner the space-time behavior of the earth vs. inertial space. Dynamic

or geometric varlations of the earth in space and time would be referred
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to the inertial frame of reference through the CTCS. The P-tower pre-
sented in this report is ancther step toward the achievement of the

above goal.
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2., The Tower of Origins

The relative positions and motions of points in space and time 5
which are characterized as the origins of various reference frames for
geodesy and geodynamics are presented and studied in a diagrammatic
structure to be referred to as the tower of origins or the P-tower.

The overall appearance, organization, and notation of the
P-tower (see Fig. 1) are similar to those of the E-tower. The points

in the diagram symbolize certain physically :: +ingful points at a

{
1
1
:
i
:
i
i
%
given epoch, Capital Pi denote natural-real origins, while their models i
1
are denoted by pi. The integer i signifies the level of the origin and }
assumes the values of 1, 2, 3, or 4, for the topocenter, bodycenter, i

i
barycenters, respectively, j

1

On a given level the points are organized along two axes: the

space axis and the time axis. The integers within the parentheses

e

(3, k) are the space and time indices of the point to be interpreted
as follows:

j = 1 point related to the observer

J = 2 point related to the target

k=1 epoch T

k = 2 '"next" epoch T + dT where dT is a differentially small

time interval.

One should note the different interpretation given here to the j index

as compared to the corresponding j index in the E~tower: 1In the

P-tower Pi(l, k) and Fi(2, k) are two distinctly different (not adja-
cent) points, which, in general, have different velocities in space.

The level of a point depends on its nature and on its .unction which is
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topocentric
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bodycentric
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barycentric
level (1)

barycentric
level (IT)

P1(1,2)

| // ! P1
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)
o
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e

1
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’ o -
inertial point p ‘\0\0 s
« . . . . . 7
Space axis

Fig. 1 The P~Tower
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associated in general with the measurement of distances, directions or

gravity.

Topocentric (observational)level Pl

A point 1s considered at the topocentric level if it serves
either as an observing point or as a target. Stars and quasars are not
congidered as target points since their three-dimensional coordinates
are not known with equal precision. The principal point of a telescope,
an EDM instrument, or of a radiotelescope are a few examples of
observing points. The principal point of an artificial satellite's
transponder or laser retro-reflector are a few examples of target

points.

Bodycrntric level P2

The center of mass of a body serves as origin on the bodycentric
level. A body is defined here as a conglomerate of mass points which
are connected to each other fairly rigidly so that variations in rela-
tive positions between the mass points (deformations) are small as com-
pared to the overall size of the body. The earth and the moon are
typical examples of such bodies and their respective centers of mass
are points of the P2 level. We see that a P2 point has a definite
physical meaning although it cannot be directly reached by observations.
A point of the Pl level is normally located on the surface of a body
and as such is associated with a certain P2 point which is the same
body's mass center. Exception to this rule is a close satellite of a
planet (the earth or the moon) which is defined as a Pl point while its

P2 point is the mass renter of the planet.
56
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Barycentric levels P3, P4

A point is considered at the barycentric level if it is at the
center of nas> of a set of bodies. The selection of the set is more or
less arbitrary and thus identity of the P3 point depends on the composi-
tion of the set (its elements). There may be several barycentric levels
according to some hierarchy. A good example for a P3 barycentric level
(1) origin is the earth-mocn barycenter. As the earth and the moon are
a subset of the solar system set (the sun and the planets) we can define
a P4 origin at the barycenter of the solar system (barycentric level
(I1)). It should be obvious that one could continue with P5 at the

barycenter of our galaxy, etc.

Inertial level p

The inertial origin p is defined as a point which is fixed or
moving with uniform velocity in inertial space [see Goldstein, 1965].
The positions and motions of all the points in the P-tower are referred
to this p point in accordance with the laws of Newtonian mechanics.

The points in the diagram are marked either as full (black)
circles or as hollow (white) circles depending on whether they repre-
sent a natural point or its model. Thus, in Fig. 1 we can distinguish
between the natural P-tower (the black points) and the model p-—tower
(the hollow circles).

The lines between two points in the double tower represent vec-
tors in inertial space. The interpretation of these vectors depends on
the axis to which the vectors are parallel and also on the nature of

the points being connected by it.

57




S T E T T TR R T TR RS ST e el BTSN

We will examine first vectors at the topocentric (observational)
level. For example, let P1(1l, 1) be an observing point on the earth
surface and P1(2, 1) represent a target on the lunar surface. As the k
index (in the parentheses) is 1 for both points, the epoch T at which

both points are defined is the same.

The vector P1(1, 1) P1(2, 1) (see Fig. 2) represents the natural

geometric distance and direction between the two points. Analogously

the vector P1(1l, 2) P1(2, 2) represents the natural distance and direc~
tion between the same two points only at a "later'" epoch T + dT.

The vector which connects the positions of the same point at two
different epochs (T and T + dT) is defined as the linear velocity vec~

tor of that point vs. inertial space. For example,

Pi(l, 1) P11, 2) velocity of P1(1, 1) at T

P1(2, 1) P1(2, 2) velocity of P1(2, 1) at T
The interpretation of the vecto:s connecting the points pl(l, 1),
pl(2, 1), pl(1, 2), pl(2, 2) is the same as above but for the model.
The differeaces between the instantaneous positions of the natural
points and their models are represented by the following vectors (see
Fig. 2):

ﬁi?ij_ij-ﬁl(l, 1) = EET(l, 1) positional disturbance vector at

epoch T for point P1(1, 1)
ﬁI?§:~IT—§1(2, 1) =48pi(2, 1) positional disturbance vector at

epoch T for point P1(2, 1)
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P1(2,2
(2,2) N ’;x P1(1,2)
".‘ — — ""‘."
~.5p1(2,2) 8p1(1,2),~
?:1(2,2> {fplu,z) T
| I
I
12D _ L o
o ", zv
7 6p1(2,1) §pI(1,1) ™, | &
P1(2,1) o *691(1,1)
e

space axis

Fig. 2 The topocentric level.

pl(1, 2) P1(1, 2) = 8pl(1l, 2) positional disturbance vector
at epoch T + dT for point P1(1, 2)

6pl(2, 2) positional disturbance vector at

pL(2, 2) P1(2, 2)

epoch T + dT for point P1(2, 2)

The vectors between the inertial point p and any of the natural

or model points in the P-tower symbolize their position vectors in an

inertial frame of reference with origin at p. By virtue of the above
definition the P-tower is a commutative diagram of the vectors in

inertial space, i.e., the sum of the vectors forming a closed loop is

identically zero. Using the commutative property at the topocentric

level (see Fig. 2) we derive the following relationships:
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P1(1,2)P1(2,2) - PI(1,1)P1(2,1) = P1(2,1)P1(2,2) - PI(1,1)P1(1,2)
P1(1,1)P1(1,2) - pL(1,1)p1(1,2) = 6p1(1,2) - 6p1(1,1)
An important property of a vector commutative diagram is that the vector
relationships are independent of the coordinate system chosen to repre-
sent those vectors. The components of the various vectors may change
from one coordinate system to another; however, their magnitude as well
as their relative orientation remains invariant.
We will examine next a vertical wall of the P-tower (see Fig. 3).
The k indices of all the points being 2 means that the wall represents
a situation at epoch T + dT. In Fig. 3 we have used a shortened nota-
tion for the vectors along the vertical lines as follows:
PI(1,2) = P2(1,2) P1(1,2)
P2(1,2) = P3(1,2) P2(1,2)
etc.
The interpretation of these vectors follows from the identity of the
end points:
P1(1,2) is geocentric (mass center) position vector of the
observer at T + dT
PETI,Z) is earth-moon barycentric position vector of the
geocenter at T + dT
ete.
The vectors ﬁf?f,Z) and pETI,Z) are analogous to the above but for the
model.
The vectors which connect the model points with the corresponding

natural points are defined as positional disturbances. For example,
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P1(1,2)

N Eseereatecnt 4 HEsIeRITNItIITS 000 44 IR 00IeTEeTTIOYTe) s ‘ P2(l,2)

P2(1,2)

P3(1,2)

P4(1,2)

|
]
|
|
|
I
[
I —
p3(1,2) ? ----- Sp3(1.2) »ﬁ P3(1,2)
|
I
|
)

Fig. 3 A column layer of the P-tower

8pl(1,2) is the positional disturbance of the observer at T+dT

8p2(1,2) is the positional disturbance of the geocenter at T+dT

etc.

The diagram in Fig. 3 being part of the P-tower is also commutative.

)
7
;
'
]

Using the commutative property, we can write, for example,
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PI(1,2) - p1(1,2) = &p1(1,2) - 6p2(1,2)

ot

[P1(1,2) +P2(1,2)] - [p1(1,2) +p2(1,2)] = 6p1(1,2) - 6p3(1,2)
etc,
We will complete the examination of the structure and signiri-

cance of the P tower by studying the interrelations between points on
one of the time-variation walls as shown in Fig. 4. The meaning of the
vectors connecting points along a column has been discussed above. The
two vectors Ff?l,l) and P??l,l) connecting the geocentric position
vectors PITi,l) and fI?i,Z) are the respective linear velocity vectors
vs. inertial space of the P1(1,1) and P2(1,1) points at epoch T. Using
the property of commutativity, we can write the following:

PI(1,2) - PI(I,1) = PI(1,1) - P2(T,1)

P2(1,2) - B2(L,1) = B(I,1) - B3(L,1)

etc.
The expressions on the right-hand side represent the relative linear

velocities of the observer vs. the geocenter and of the geocenter vs.

the earth-moon barycenter, respectively. An interesting corollary is
the following inequality:

R —
37 1(1,1) # P1(1,1) .

Summarizing our discussion of the P-tower structure and the
interpretation of the various points and vectors in it, we see that it
can serve as a convenient means for representing and studying the whole

range of positional and velocity information related to points in the

natural world as well as in its model.
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P1(1,1) ? ﬁ—(l’l) j P1(1,2)
P1(1,1) PI(1,2)
P2(1,1) * P20, »* P2(1,2)
P2(1,1) P2(1,2)
P2(1,1) , I »’1’3(1,2)
P2(1,1) P3(1,2)
P4(1,1) @ PAQ,1) >@ P4(1,2)

Fig. 4 A vertical "time" wall of the P-tower

It should be kept in mind that certain vectors in the P-tower can
be null vectors due to the two end points being coincident. For
example, if P1(1,1) and P1(2,1) are both points on the earth surface,
the points P2(1,1) and P2(2,1) represent the same point, i.e., the geo-
center, and therefore the vector ?Efijijnff(Z,l) is a null vector. For

this case, we can easily deduce the following identities:

P2(1,1) = P2(2,1)
p2(1,1) = p2(2,1)
8p2(1,1) = 8p2(2,1)
etc.
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3. Barycentric and Bodycentric Levels

In Chapter 3 the nature and interrelationships of origins at the
barycentric and bodycentric levels are studied. The major objective is
to identify the positional disturbances and their time-like variations
at these levels with inadequacies in current theories and respective
constants., In particular we study the problem of possible dependence
of second- and third-level disturbances on the rotation of the earth
and its mass distribution.

In Fig. 5 we have reproduced part of Level 3 of the P-tower
relating it directly to the p point. Bypassing Level 4 in the above
figure is the equivalent to the assumption that the solar system bary-

center P4 and its model p4 are coincident and are taken as the inertial

———

point. The vectors P3(1,1), P3(1,2) and their difference g%-P3 (or,

equivalently, in this case 53) represent the motion of the earth-moon

barycenter P3 with respect to the barycenter of the solar system. As

the p3(1,1), p3(1,2), and ?E'represent the model of the same, computable
with current theory, it should be obvious that inadequacies in that
theory will be represented by the respective disturbances. Accordingly,
6p3(1,1), 6p3(1,2) and their difference g%-éﬁi'are all non-zero vectors.
Little as we know at present about the 653'vector and its time~
like variation g%-é;§; we can at least state the following: The theory
of motion of P3 about the barycenter of the solar system is a function
of the combined masses of the earth and the moon, the masses of the sun
and the other planets in addition to constants of integration (or zero

epoch state vectors). Accordingly, phenomena such as (i) the motion of

the mass centers of the earth and the moon vs. their barycenter P3,
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p3(1,2) 6p3(1,2) P3(1,2)

L T T T T LT T T L R T P P P TP PPN

w7/
/ /
/ / _
p3Q1,1) /..8p3(1
| / P3(1,1)
p3(1,1) |

P3 earth-moon system barycenter
p3 mcdel earth-moon system barycenter

P inertial point (identified with the solar system harycenter)

Fig. 5 The harycentric level

(ii) the mass distribution within the earth or the moon vs. their
respective mass centers, (iii) the rotational motion in space of the
earth or the moon, are not parts of the disturbances in the motion of
the earth-moon barycenter. Ancther wayv of stating the above would be
that measurements within the earth-rioon system would not be sensitive to
the 6p3 disturbance or to its time-like variatioms.

In Tig. 6 we have added Level 2 tc the previous case. P2 repre-
sents the earth-moor burycentric pesition vector of the geocenter (or
selenocenter) P2, Using the commutative property of the loop formed by
the four natural points, we can derive an expression‘for the vector
P2(1,1)P2(1,2) denoted in the diagram as ?3

P2 = P3 + P2(1,2) - P2(1,1)




P2(1,2)

!
——

P2(1,2

- P3(1,2
p3(l)1) ""*--...,,.'__ ( ’

\ P3(1,1)
/

Fig. 6 The bodycentric and baiycentric levels

but at Level 3 we had

' E
—_— o — i
P3 55-?3

and so it follows

S5 _ 9P3 , P2
P2-—--3T +"5-;r——.

Using the loop at Level 2 and the above results, we can write
P —p——— 3P2 | 3P3 op2 op3

2 o I m— — -
$p2(1,2) $p2(1,1) aT + aT oT oT

S 557 = 2 57 - 5 . 0 3 - 7
55-6p2 = 57 (P2 - p2) + 3T (P3 - p3)

O (85T - 63) = 2 5y _ =
a7 (8p2 - 6p3) =37 (P2 - p2)
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P2 - ;E) and its time derivative g%-(?f - ;53 represent the difference
between the real and the model motions of the geocenter about the
earth-moon barycenter. We denote by c the ratio between the masses of
the earth and the moon

M
e

c‘ﬁ-~8103
m

and identify

P2(1,1) as the position vector of the geocenter with respect to

the earth moon barycenter P3 and

P2(2,1) as the position vector of the selenocenter with respect

to the same origin P3.
From the definition of the barycenter of a two-body system we have the
following (see Fig. 1):
(1) P2(1,1), P2(2,1) and P2(1,1)P2(2,1) are collinear
(i1) |P2(1,1)| + |P2(2,1)| = |P2(1,1)P2(2,1)|
(ii1) [P2(2,1)] / |P2(1,1)| = c.

The above equations demonstrate the simple relationship between
P2(1,1) and the lunar theory which in principle gives the components of
Ff?f:ij?E(Z,l) and its time derivatives.

Si'and g%-;f can be computed from the current dynamic theory of
earth-moon system (essentially the lunar theory), while P2 - 533 and
its time derivatives represent corrections to that theory.

From the above we can draw two conclusions which complement each
other:

(a) The positional disturbance of the geocenter 635 and its time

derivatives g%-gsf consist of twe components which represent
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corrections to the theories of motion of the barycenter of the
earth-moon system and that of the geocenter (selenocenter) with

respect to the barycenter of the solar system and to each other

respectively.

(b) GSE'and é%-d;i'do not depend on the rotaticn of the earth (or the

moon) or on variations in its mass distribution.

Summarizing this chapter and extending its conclusions to 6;i-we
can state:

(a) Unaccounted perturbatinns in the theory of motion of the

earth-moon barycenter with respect to the solar system barycenter
dominate the 65§'disturbances and their time derivatives.
(b)

Unaccounted perturbations in the lunar theory dominate the

op2 - GEE'disturbances and their time derivatives.
(c) The Level 1 disturbances 6pl or actually (Spl - &p2) and their

time derivatives are dominated by the rotation of the earth (or

the moon) and by mass redistributiomns.

It is important to realize that according to (b) above 8p2 does

not have a diurnal motion and it is independent of inadequacies in the

adopted gravity model of the earth (or the moon).
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4. The Topocentric (Obsarver-Target) Level

In this chapter we study problems which are related to the P1
bodycentric position vector and its time-like variations. Our discus-~
sions are limited to Level 1 origins which are located on the surface
of the earth (or the moon).

For a point on the earth (moon) surface there are three issues
of fundamental importance which have to be carefully studied in order
to understand the nature and significance of Level 1 positicnal dis-
turbances and their time-like variations:

(1) The rotational motion of Pl with respect to an inertial frame
of reference centered at P2,

et

(ii) The relationship between ii; é%’Pl and the variable gravitational
potential field of the earth (or the moon).
(i1i) The explicit definition (and realtfzation) of pl--the model topo-
centric origin.
The proper order of introducing and studying the above three

topics 1s not arbitrary as they are interdependent. Accordingly we

begin with (i) proceed through (ii) and finally end up with (iii).

4.1. The Rotational Vector 5, Its Model and Disturbances

The time-like variations of the geocentric position vectors and
their disturbances are strongly dependent on the rotational motion of
the earth (moon) vs. its mass center. We will devote this sub-chaprer
to sharpening the concepts associated with the rotation vector 5 for
the earth and the rotational motion of PI around it.

The rotational vector Q describes by its direction and magnitude

the rotational motion of a point on the earth surface Pl vs. the
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geocenter P2 and with respect to inertial space. The time-like
variation in position (linear velocity) of Pl with respect to P2 is

obtained by the well-known vector equation

which is rigorous for a rigid body. The motion of Pl on the non-rigid

earth vs. the geocenter P2 can be partitioned into two parts as fol-

lows:

-a%,-ﬁ = 5_2 x P1 +(-8ELL)-E__E—

aT /|P1]

where the first term represents variation in the direction of P1 vs.
inertial space and the second term is the variation in its magnitude.
We will discuss in a subsequent sub-chapter the second term and its
association with variations in the gravitational potential at P1, In
the present sub-chapter we will be concerned only with the first term
which is equivalent in form with the rigid rotation of P1 about the
mass center P2 (see Fig. 7). The absolute rotational motion of Pl
with respect to a non-rotating, inertial triad, represented in Fig. 7,
by the inertial vector I, is quite complicated but can be partitioned
into a sequence of simpler relative motions. For that purpose we

define a sequence of rotational vectors - axes between 1 and P1 ranked

in the following order:

1, §

g g @ PL

)
f
]
r
'

where a higher rank is associated with the nearness to z'(Fig. 5}, The

three rotational vectors are defined as follows:

70

P

oot o 8t A e et B 60 e b el e s

TP DU ST S PSR

e e e ann i o Lo AT,



Ak T S

SRR st Cha Y e A A A A e A

Fig. 7

Fig., 8
71




\
j
{
¥
E

arex TR

i St Ol

ﬁg - is the spin wvector. Its orientation vs. 1 is defined by the
general (planetary + lunisolar) precession and by the forced terms
of nutation. It does notcontain terms of diurnal or higher fre-
quencies. Its magnitude is changing in time with unpredictable
variations to be determined by means of observationms.

ﬁé ~ 1is the Fulerian vector which rotates around ﬁg with a nearly
diurnal frequency and with a small angular amplitude ]dﬁ?l/lﬁgl
where Aﬁ; = ﬁﬁ - ﬁg. Both frequency and amplitude of Aﬁé are
unpredictable and can be determined only through observations.
The Aﬁ? vector in magnitude and in orientation represents the
polar motion phenomenon. The ﬁﬁ axis and its motion vs. I'repre-
sents the complete solution of the differenti.. equations of
rotational motion of the earth.

Note: We should point out that both ﬁé and ﬁé are space invariant,

i.e., they are the same in orientation and in magnitude for any

point Pl. Thus QE can be regarded as the instantaneous global

rotational axis of the earth.

! - is the instantaneous rotational vector at Pl. It has a nearly
diurnal rotational motion around ﬁé and its angular distance from
ﬁﬁ is extremely small of the order of 10"6 seconds of arc. The
dﬁi vector represents local motions of Pl.
In gspite of the fact that Q or approximately ﬁé are the true
instantaneous axes of rotation of Pl, it has been demonstrated by
Atkinson [1975] and also by Leick [1978] that the axis that can be

detected directly by observations is the 55 axis, while the ﬁg and the

{l axes are unobservable, Intuitively, the above statement could be
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explained by the fact that both 'Q'E and Q have a nearly diurnal rota-
tional motion around ﬁs just like P1. An observer at P1 cannot detect
on a short time basis (one day or less) the motion of Pl vs. §E and Q.
Only on a much longer time basis, i.e.,, days for §E and years for Q can
one detect the accumulated effect of the small perturbations Aﬁp and
Aﬁz on the orientation of Pl vs. -ﬁs and through it vs. 1,

To recapitulate, we can state that the time-like variations of

Pl are defined by the following vector equation which is identical to

2 P e (B 48T 440 5T (5T . L
37 PL = (O + A, + A%) x PL + 57 |PT| I-F";I—
The above equation means, for example, that the angle between P1 and

4
i
3
i
:
t
) E
the one written at the very beginning of this chapter. 3'
;
:
i
3
i
i
3
- !
Qs, the instantaneous geocentric colatitude, varies in time due to the }

]

combination of polar motion and local motions. In the second part of

this sub-chapter we will define the model of the rotational vector .

)

1

The dynamical model of the earth is defined as in [Grafarend et al., ;}

1979] as arotational level ellipsoid rotating with a constant spin rate.

The orientation of its spin axis ws

is given by general precession and forced terms of nutation as pre-

with respect to an inertial frame

sently adopted. With respect to the axis of figure z (minor axis of the
ellipsoid) the spin axis describes a cone with an amplitude 0'15 and a
period of 1.1828 years. The sense of the model polar motion, thus

defined, is counterclockwise as seen from the north. The two constants

(0V15, 1.1828 years) correspcnd to the average amplitude and period of

polar motion between 1970 and 1976 [Markowitz, 1976].
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Fig. 9

The total rotational motion of the model geocentric position vec-

tor -1;_1- is given by the following equation
2Pl =@, +f0) xpl=wxpl
oT S P P P
where L\Bp is the model polar motion vector. Its magnitude is

— " -
| | = ‘1%"@‘2‘8’%%?'5" = 3.863085 107° rad/year,

it is normal to US’ coplanar with BS and z (axis of figure of the ellip-

soid) and points in a direction such that ms

Fig. 9). AZEP rotates around BS with an angular velocity slightly

is between Aap and z (see

higher than ]-(ES l

- 2n
]ws] + 17878 = 2306.4797 rad/year

The angle between the Chandlerian axis w and the spin axis -‘;S is

[0, |
——‘:PT ~ 00003463
w
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Because of polar motion in the model the instantaneous colatitude
and the hour angle of the vernal equinox h of the position vector ET
vary in time (see Fig. 10). These variations can be computed as fol=-

lows:

Qe

= —|Mw | * sin (h - h
Ip sin ( o)

e

= lwsl - lAwpIcos (h - hp) * cot O

As the model of the earth is rigid the coordinates of pl in the x,y,z
geocentric reference frame, fixed to the ellipsoid with z as the minor
axis, are also invariant. After one polar motion cycle, i.e., 1.1828
years, the 0 and h coordinates of SI'will be back at their initial

values.
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In order to illustrate the feasibility of this type of parametri-
zation of polar motion we evaluated the effect of the model polar motion
on the geocentric equatorial coordinates of five statioms. Over a
period of 440 sidereal days which is slightiy longer than the period of
model polar motfon (1.1828 years), we numerically integrated the time
rates of the Oi and hi coordinates assuming spin and polar motion to be
the only causes of their variation. The constants used were as fol-
lows:

w, = 2301.1676 rad/year spin rate of the earth

ﬁp = 2306.4797 rad/year spin rate of the polar motion vector.

Awp = 3,863085 - 10-6 rad/yzar polar motion magnitude
The initial coordinates of the five stations are given in the

following table:

Table 1, 1Initial Equatorial Coordinates

Station h o
1 10° 50°
2 82° 50°
3 154° 50°
4 226° 50°
5 298° 50°

The initial value of hp was set at 180°. Table 2 shows the time-like

variations of the h, 0 coordinates of the five stations in arc seconds

computed at 20 sidereal day intervals over a period of 440 days.
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The values in the table are computed by subtracting from the numerically

integrated hi’ Ui as affected by polar motion the equivalent hi’ o

i
values without polar motion.

In Fig. 11 we have plotted in addition to the varying o, h coordi-

nates oi the five stations also the varying position of a reference pole

vs. the spin axis and the vernal equinox. The reference pole is defined

in a way similar to that of the CI1O pole, i.e., the angular distances to

the five stations are invariant.

We summarize this sub~chapter by writing up the equations for the
disturbance vector in G} i.e., the difference between the real and the

model instantaneous rotation vectors (at Pl and pl respectively) as
follows:

Sw=Q-w= (Qs-ws) + (AQP-AwP) +A92= Gws+ 6wp+6w£

where

SBg - is the disturbance in the spin vector of the earth, its first
and second components being due to inadequacies of current theory

and constants of precession and nutation and its third component

repr#: enting spin rate variationms.
65? ~ is che polar motion disturbance vector; it is normal to

ws and

represents the di‘ference between real and model polar motions.
Sai z Aﬁk - is the local component (space variant) of the 8w vector

and is associated with local motions of Pl.

We repeat that a&é and 65; are global in nature, i.e., they are space

invariant while Gwz ies different, in general, for different points.
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4.2 Gravity and the Position Vector
The relationships between the geocentric position vector Pl and
its time-like variations on the one hand and the potential of gravity
and its derivatives at Pl on the other are studied in this sub-chapter.
The time-like variations in Pl were partitioned (see 4.1) into

directional and magnitudinal components as follows:

3 5T 5 .35T .0 137 P1
—ﬁpl-szxpl+5¢r-[m| . —_

P
We will study first the various causes for variations in the potential
W at Pl and theiyr relationship to variations in the magnitude of the
geocentric position vector.

The gravity potential of the earth at P1 (which is a point on the
earth surface) is evaluated by the following well-known formula (see

Fig. 12):
W=G /[ %-dv + %-(ﬁ'x Pi) » (@ x PD)
v

where dv is an element of volume,
p,% are the density of dv and its distance from Pl respectively,
G is the gravitational constant.
The integration is extended over V which includes in our case the solid
earth, the oceans and the atmosphere. W thus obtained would be the
measured value of W from which the potential of extraterrestrial masses,
the tidal potential has been subtracted. Considering the total mass
within V to be invariant

S pdv = const = m
A
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Fig. 12

or 37 =

we can differenliate W with respect to time to obtain the time-like

variations in W

M (.ée.i_é&._e_ (_811)
3T G‘f 3T © L " BT 22)“"* 3T/

where (g¥>9 denotes variations in rotational potential.

The first term in the integral is not associated with any changes in
the relative distances between Pl and other material points including
possible target points P1(2,K) or other observing points P1(1,K). In
other words, time-like variation in gravitational potential due to
density redistribution within the earth are not accompanied by time-like

variations in relative position. However, the position of the mass
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center P2 does change (mass center shift) within the surface S and con-
sequently the geocentric vector P1 also changes. The variations in the
position vector P1 due to mass center shift are space invariant, i.e.,
they are the same for all the points on the earth.

The second term in %¥ is explicitly associated with variations in
relative distances between Pl and the totality of mass points which con-
stitute the earth. The phenomenon which dominates this term is the
local differential motion of P1l, One out of several causes for local
motions is the elastic response of the earth to variations in the tidal
potential,

By definition, the "horizontal" component of motion of Pl is nor-

mal to -T (the direction of the local vertical) and produces zero vari-

)

ation in the potential. Thus, the only component of 5§T'WhiCh is
related to %¥ is the vertical component, i.e.,

P , , %  OPL,  PL _ 3 (5

oT (-r) = T 'ﬁ"l oT IPli

where -T is the unit vector along the local vertical (see Fig. 13) and
rhe approximation is permissible due to the small angle between P1 and

-I‘I

The time~like variations in magnitude of the geocentric position

vector P1 are related to variations in the potential W by a modifica-
tion of the well~known formula [Heiskanen and Moritz, 1967] which

relates potential and height differences:

W 0 137
o = 8 " 37 [P
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Fig. 13

from which it follows directly

In the second part of this sub-chapter we study the relationship

between the local gravity vector ~T at Pl and the geocentric position

vecter FI, their models and the corresponding disturbances.

Fig. 14 shows a schematic spatial diagram of the geocentric posi-
tion vector ?i} the -T local vertical vector ard their respective models
Pl and -y. The disturbances 8p2 and 8pl as well as 8(-Y) are also shown.

z is the axis of figure of the reference ellipsoid. We derive first an

expression for the angle between 4? and pl.
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Fig. 14

A right-handed Cartesian coordinate system x, y, z is defined
(see Fig. 15) which has its origin at p2 and which is fixed to the
reference ellipsoid. The ellipsoid, or equivalently, the x,y,z system,
rotates vs. inertial space around the spin axis Eé which is inclined by
015 vs. z. The point pl is defined in the x,y,z system by its three
Cartesian coordinates pl(x,y,z) or by the three geocentric spherical

coordinates p, 0', A which are the geocentric radial distance, colati-

tude and longitude respectively. Since the model is assumed to be

rigid he three coordinates are constant.

84

i S 2 e e S S

T

L g S e e



A

Fig. 15

We will use also ellipsoidal coordinates of pl in the x,y,z
coordinate system, namelvy u, B, A which are convenient in that the
gravity (normal) potential U of the model ellipsoid and its derivatives

can be represented in closed formulae.

For the computation of U and the components of its gradient V'we

will assume that the component w of Wg along z is equal in magnitude

to IZ%I. The difference between w and Imél divided by w is negligible
- of the order of 10_12. The value of the rormal potential U at the
point pl is computed as a function of the four parameters of the level
ellipsoid a, e, m, w and the components of the position vector 1.

According to [Heiskanen and Moritz, 1967] and utilizing ellipsoidal

coordinates u, B, A, the following exi:2ssions hold:
85
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e“p cos’o + o —ae’)

2 22 2 222
N el \/;2 22 2, :

*
8 = arc sin P_C._"_%_O_

the inverse relationship being

P =\/u2 + azezcoszﬁ

o' = arc tan v:l +(%e-i cot B

Longitude is the same in spherical or ellipsoidal coordinates. The

potential at pl(u,B,A) is computed by the following formula (see ibid.)

where the effect of the small equatorial (x-y plane) component of wg
has been neglected:

U(u,B) =§% arc tan —a;:-:'--t-%- mza2 ag:)- (sinzﬁ-%) +-32“- wz(u2+a2e2)cosz3
where
= -1'- -(1 + 3 ...9..2_..) — 3 u
q=73 55 ) arc tan -3
- a"e
- 2 ‘, 2
qo=%_(1+3—(-l——2-9—-)-)arctan £ _ .3 1-e]

g e
e \/ 1- e2
The vector along the gradient of U at pl is -Y- the normal gravity vector.
Its compoments along the ellipsoidal coordinates are:

5U_ _ =Gm 2 2. 1wfa?, 2, 1y 3

= + W u cos"B+x sin —-—) = 22

du (\12+32e2) 2 qo ( B 3)| 2 7 arc tan 7

_ 3u2 + Zalze2 J

ae(u2 + aZeZ)
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%%’8 wzsinB cosB {az é% - (u2 + azez)]

1Y

w0

In order to obtain the components of ?'in the x,y,z system we need the

Jacobian of transformation from u, B, A into x,y,z coordinates.

The independence of U from A implies that the three vectors E; Si'and Y
are coplanar. Accordingly, instead of transforming from u, B, A iuto

X,¥,2, we transform from u, B into r, z where r, z, A are the cylindri-

cal coordinates of pl and r = sz + y2 is the distance from the z axis.

The transformation equations are simple
r = Vuz + aze2 cosB
z = u sinf

The components of'v in the r,z system would be computed then in a row

vector form

U Ju U 3U
[0 207- [ 3y 5

r 9z du 9B
where
3(“) 2 2 2 u cosf u2 + 32e2 sinB
7 = B S Yu +ae
B(r) u2 + a2e2 sin23 —u cosB__
z - sinB 5 73
u +ae

The angle b:tween §.and the z axis is thus given by

U

or

o! = tan | —=
Y arc [ ]
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while the corresponding angle of the pl vector is (see Fig. 16):

2 2 2
01;1 = arc tan f- = arc tan [E._uae__. cotﬁ]
|

P2

Fig. 16

We point out that ¢ the complement of ¢' is different from the conven-

tional geodetic latitude which is computed for a point on the ellip~
soidal surface. We shall see in a subsequent sub-chapter that the
model of Pl is not on the ellipsoid.

The angle between J? and Si'is
thus

, Ac' = ¢! - a!
\ y »pl

and for mid latitudes and a few kilometers height above the ellipsoid
it is of the order of 10'.
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We will derive now an approximate expression for the angle hetween
Pl and the -T vector as a function of Ac', the positional [8p2, &pl)
and the angular [§ (——Y-)] disturbances. The angle between P1 and ;l-
denoted by A is evaluated from the dot product:

LB coen
|PT| |pI|

From Fig. 14 we have
PL = pl + (Spl - 6p2)

pL * pl + (opl - 0p2) * pl

cosf = ek
|p1} |p1}
. L [rmua;i-ssi) —5-_1—-]
|P1] [p1]

We expand cosA (A is a small angle) and regroup

s = ,5‘/1_[I}i‘l , (8P1 - &2) | 3T ]
[P1] 1] [p1]

If (Spl - 8p2) is collinear with 1, A will be zero. A will be
maximum for ﬁ;l—l = |P1] from which we derive finally (see Fig. 17)

A < 16p1 - 8p2]

et

If we define —p—l_ and E:’Z- so that the magnitude of the difference
(8pl - 8p2)is of the order of a few kilometers, A will be a small angle
of the order of tens of seconds of arc.

Considering now that (-T), (-:77), P1 and pl are not necessarily
coplanar we can see according to Fig. 18 . hat the angle between P1

and -T can be approximated by Ao' the error being smaller than the sum
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(6p1 - 8p2) P1
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| 037
\ R - /
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p2 @ P2 { \O"/; SN
\ —
\ -y /
\~.~. _

The unit sphere

Fig. 17 Fig. 18

[A + 8(~y)]. The difference between the real AL' and its model Ac',
i.e., the disturbance in Ac' depends on the deflections of the vertical

8§(-y) and on the positional disturbance difference (&pl - §p2).

4.3, Time-Like Variations in Level 1 Positional Disturbances

In Chapter 3 of this report we studied the general nature of the

second- and third-level positional disturbances and their variations with

time. In the case of Level 1 positional disturbances and their

time-like variations we will be more specific. In this sub-chapter we

derive the differential equations of Level 1 positional disturbances in
terms of disturbances of the rotational vector £ and also in terus of

variations in the magnitude of the geocentric vector Pl. Assume that
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the real geocenter P2 and its model p2 are coincident, i.e., the second
level positional disturbance 635 is identically a zero vector.

Later we will relax this condition and will show the resulting
implications. The time-like variations of the geocentric vector FT,
%gi or ﬁi'was partitioned above /see 4.1, 4.2) into a variation in
direction and a variation in magnitude (see Fig. 19). For completeness
we rederive the expression for P1 in a slightly different form:

Soi[E ] - E e A

|?1] |P1] |P1]
3 _P1

o = |P1| =WxPT= (wx 80) x (T + &) =
|P1]
wxpL+wx 6pl+ 8w x pl+ Swx 6pL

Py

ol
wlo,
|

et I
|
—_

P

Fig. 19
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The time-like variation of the ET'vector by definition consists
of a directional component only as the magnitude of pl is invariant
(The model of the earth is assumed to be rigid.)

9 —— - e

ﬁpl-wxpl
where w is the sum of the diurnal rotational (spin) vector B; and AE;
the model polar motion rotation vector.

The expression for the Level 1 positional disturbance simplified

by the assumption 8p2 = 0 is

A

4

E

N

-

k
P T T T T P P

6pl = P1 - pl
The time-like variation of GET is obtained by differentiation as

follows:

0 3 3
o7 oL =37 PL - 3r Pt
We substitute expressions derived above, neglect two terms of the second

order (Awp x 6pl), (8w x 6pl), and obtain

:—T@S'f:—‘-f:l_—l-%]?ﬂ + 60 x P+ x 691
Pl

Rearranging and substituting for Pl its equivalent we obtain the final

3 —
form of 3T épl

37 Gpl ~ w x &pl + Sw x pl + |p1 + § 1| .Bl_i_énll
|pT + &p1]

This is a set of three first-order differential equations of the posi-~

tional disturbance 8pl with 6w as an independent parameter. It demon-

strates the relationship between the Level 1 positional disturbances and

those of the rotational vector. If the positional disturbance Ggi'at
some initial epoch is known, we can integrate numerically the differen-

tial equations of SEI using rotational vector disturbances and
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variations in the r.agnitude of Pl (or equivalently variations in the
potential W), whi:h have been determined from observations.

We will show now that the above equation holds also for the case
where SEE is not zero. Using a portion of the P tower as in Fig. 20 we
can use the commutative property to derive the following (Level 4 is

excluded without loss of generality):

) 3 e 3D - s < O OB
] N R S
BT 8p2 = 6p2(1,2) - &p2(1,1) AT 8p3 + T T
= 67T = 651(1,2) - &T(1,1) = -ng- §pZ + Q x 1 + BAIT’” . P
[P1]

~ox Pl =PI+ U x P+ uxPT - w x pT
3|v_j_ P1
|P1]

Neglecting second-order terms, substituting 6; for w and

regrouping we have:

$p(6PT - 6700 =3, (67T - 67 + i x T 4L 57T+ (697 - 67D
pl

The resulting vector differential equation of the geocentric positional
disturbance (Spl - &p2) is similar to the one obtained earlier for
§p2 = 0.

In the second part of this sub-chapter we will develop a specific
model of the Level 1 origins for the earth. The models of all the Pl
points of the earth comstitute thus the geometrical model of the earth
eucface. 7 rotational level ellipsoid discussed earlier in this
report is the dynamical model of the earth. By making the distinction
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P1(1,2)

P1(1,2)

P2(1,2)

P2(1,2)

P3(1,2)

p3(1,1)A§{..................... /

P3(1,2)

a

Fig. 20
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between geometri.al and dynamical models of the earth we actually define pl
as a point which is ot located on the surface of the ellipsoid. As we shall
see, pl 18 locate: on the telluroid as defined by Hirvonen [1960] and as
described also in [Heiskanen and »-ritz, 1967].

The selection of the tellurcid as the geometrical model of the
earth is essential for establishing a clear and unambiguous relationship
between the potential of model (normal) gravity at pl and its deriva-
tives on the one hand and the geocentric wodel position vector pl and
model gravity vector Yy at pl on the other.

In the P tower we have denoted a point on the earth surface as
either #1(1,k) or P1(2,k) where indices 1 or 2 indicate an observing
station or a target at the epoch ’IJk (k = 1,2). In the following dis-
cussions we will drop the indices for convenience, as it will become

clear that the particular values of the two indices within brackets are

irrelevant. The fundamental vectors, discussed in [Grafarend et al., 1979],

—-1‘—, Q are specifically referred to the Pl point, where in particular T
is the direction of gravity at Pl and Q is parallel to the axis around
which the geocentric vector Pl rotates with respect to inertial space
(see sub-chapter 4.1).

We denoted the model of Pl as pl and denoted the vector dif-
ference prl as 5;:3: the positional disturbance of pl, Just as for Pl
above, the models of the fundamental vectors —-Y-, w refer to the pl
point. 1In particular the Y vector is defined as the direction of model
(normal) gravity at pl and w is parallel to the axis around which the

model geocantric vector ;I = p2pl rotates in inertial space. In order
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Fig. 21

to focus on ;T; PI and SET alone we will make the assumption that p2
and P2 coincide, i.e., 6p2 = 0 (see Fig. 21).

In principle 8pl cannot be and remain a zero vector due to the

essential difference in.the rotational motion of the two vectors ;T and
P1. § and w are different in direction and in magnitude; ISE] is con-
stant by definition (rigidity) while |§T] varies in time due to various
causes like tides, mass redistributions, regional uplifts, etc.

We will define now the relationship between PI1 and pl (see
Fig. 22) through the concepts ¢! the height anomaly Z and the telluroid
as described in [Heiskanen and Mo:.tz, 1967]. Inaddition to the basic

angular parameters ¢, H which define the orientation of ~-T versus

we introduce the gravity potential W at Pl or actually the potential
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P1(¢,H,W)

¢z = |6pl]
pl(4,h,U)

Fig. 22

difference woo ~ W between the geoid and Pl, The parameters of the
reference ellipsoid (a, e, w, m) are chosen so that the model (normal)
potential on its surface UOo is equal to Woo‘ In Fig. 22 the quanti-
ties &, H and W define the position of Pl in space and the direction
of -T ther:. Apply to -T the disturbance 6(—?} with an opposite sign
to obtain (except for a small correction Ac'") the —Y vector.
Beginning from Pl we measure the height anomaly [ along the J?
vector and obtain the pl point, i.e., the model of the Pl point. The

positional disturbance vector 6;I.thus is defined in magnitude by 7 and
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by J? in direction. The poinf pl so defined 1s on the telluroid.
According to the definitions of f and the telluroid the normal gravity
potential at pl is equal to the natural potential W at Pl or equiva~
lently the respective potential differences versus the ellipsoid and
the geoid are equal

Uoo - Upl = woo - wpl

Now apply to T the disturbance 6w with opposite sign and obtain the
direction of W in space. Using a rigorous transformation from -Y to
Pl (see 4.2) obtain the direction of pl in space.

The niagnitude of ET is obtained from Y at pl, the 0 angle between
Si'and z (0' after being corrected for model polar motion) and the para-
meters of the ellipsoid. Thus, we arrive finally at the p2 point, the
mass center of the ellipsoid.

We can summarize in concept the above relationships as follows:

(i) Three quantities (x, y, 2z) or (¢, A, U), are needed to define

the pl and -y vectors.

(11) Two disturbances (G(-?ﬁ and ) are needed to transform from EI
and J? into P1 and -T. The two disturbances are represented by
three numbers: two for 6(-?), the deflections of the vertical,
and one for %, the height anomaly which is close in value to the
undulations of the geoid.

The disturbances 6(4?) and ; as defined above correspond to the
quantities which would be evaluated through well-known techniques of
physical geodesy [Heiskanen and Moritz, 1967].

There are two basic difficulties involved in the above definition

of the pcsitional disturbance 6;T:
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(1) The gravity potential W at Pl varies in time and correspondingly
the model potential U at pl which is equal to W should vary also.

This, however, would require a non-rigid telluroid which contra-

dicts our definition of a rigid model of the earth.

(11) @ and w are different in magnitude and in direction. As the
above vectors represent the rotational velocity vsctors of Pl

and pl respectively, it is obvious that the two points will not

remain aligned along the 47 vector, except at an initial epoch.

A possible solution which allows us to retain some of the obvious
advantages of the telluroid as the geometrical model of the earth with-
out sacrificing the rigidity principle is as follows:

The geometrical model of the earth is assumed to be rigid. It is
defined as the telluroid at a specified zero epoch. From the zero epoch
and on the positional disturbances vary according to the differential
equation derived in the filrst part of this sub-chapter.

4.4 Time-Like Variations of the Distance
Between Two Earth Surface Points

In this sub-chapter we study variations in the distance between
points at the topocentric level in order to identify the global and
local parameters which can be recovered. Consider the distance between
two points on the earth surface, i.e., P1(1,1) and P1(2,1), the
observing and the target points at the topocentric level of the P tower
(see Fig. 23). As both points are defined on the earth surface their
body-centric reference point P2 is the same (the geocenter) for both and
so the vectors PZ?ijijiizé,l), PZYETESEETQ,Z), etc. are all null vec-

tors.
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P1(2,2)
"'\. — c(2)
. 691(2,2)
™\ p1(2,2)

— ( S@P1(1,2)
P1(2,2) ’éf‘\\h"f- PLULD) ™

c(2) ™~
, I F2.2) 71} §pL(1,2)
P1(2 a};) 1 I / —
P1(2,1 ,..a--”:::,..--""' ~ :(1) / pl(l,z) Pl(l,z)
: §p1(2,1) ) o p1(1,1)
5p2€2,2)

\-
e | 8P7(1,1)

| I p2(2,2) ‘ \w (\"“)——‘ 2) e
P1(2,1) — k; 592(1’ P2(1,2)

pL(2,1 ) e
/
73O P
et o _ ) -
P2(2,1) p2(1,1)%,
6‘-P;-:-Z-(l,ls-._"l
P2(1,1) i

We will simplify the notation in this sub-chapter and adopt

the following:

C = PI(2,1) - P1(1,1)
; c = pi(2,1) - pi(1,1)

§c = §p1(2,1) - 8pi(l,1)

100




g T T
e T

R aaEaa

e e T T T TR V

where E} E} 8c are the respective observer-target vector, its

model and its disturbance, From the commutative properties of the

P tower (topocentric level) we can easily derive the following (see
y
Fig. 23)

C=c+ 8

The rates of change o tL: abrve vectors are reflected in the dif-

' ferences C(2) - C(1), c(2} - c(1) 8c(2) - 8¢c(l) and can be obtained

by formal differentiation vs. the time variablrs:

By C we will denote the rate of change of the magnitude (length) of the
vector C.

From sub-chapter 4.1 we have
9 —— = e
S pl =w x pl
which when applied to the difference p1(2,1) ~ pl(1,1), and remembering
]

that w is space invariant, results in:

Note that ¢ = 0, i.e., the distance between any two model points is

invariant according to the assumption of rigidity.

The disturbance in the rotation vector 8w is presented in two compo-

nents as follows (see sub-chapter 4.1):

global component

Sw =ﬁé+ﬁ
g p

65@ local component.

From sub~chapter 4.3 we have

B (65T - §72) = 0 x (671 - 67D) + & x PT + | F1|. 2
pl
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which when applied to the difference 6pl(2,1) - 6pl(1,1) results in:

§c >~ w x 6c + 6258 xC + [aau x pl(2,1) - a'uT“ x pl(1,1)]

" ——

d_ BT 1(2,1 5 1(1,1
+[2 [Fi2,1)] » RHZD 3 157 5y . LD 1
o iz, | 7 1511, 1)

fc >y xde+ s?ng'E+ (ST + &M)

With the above the rate of change of |E], i.e., C is

c=CC_(c+80) - (c+60)
C C
1 — = e —_ e — —
=z (Wxce*ect+wxceSc+wxb*c+oxdc e Sc
+<sagx‘c‘-E+(af+aﬁ) « C]

The firsct, fourth and fifth terms in the square brackets are zero
due to the fact that two of the three vectors in the mixed vector pro-
duct are the same. The second and the third terms cancel being of the

same magnitude and opposite sign. Thus finally, we have the following:

c=%- ST + 61) = S « (6T + 6M)

olo]l

Explicitly written the result is

'§f |P1(2,1) -P1(1,1)]| = 5’_1_(2,1)—-3{(1,1)
| |p1(2,1) - pI(1,1)]

-{[GZEM xET(Z,l)—GEJM xpi(l,1) ]

Q15T pl(2,1) _ 3,57 . _pl@1,1) }
+| Z|P1(2,1)] » = - 5=|P1(1,1)| « -2=
kd | Fie,n| PT(L,1)] )

From inspection of the above equation we can state the following:
(2) The rate of change of the distance between two earth surface

points is independent of global phenomena.
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P2(1,1)

(b) The vector sum (6L + 8M) represents the difference in local
horizontal and vertical motions (the relative motion) between
the two points.
In the last part of this sub-chapter we will study the effect of
a shift of the geocenter (due to mass redistributions) on the distance
between two surface points.

Denote the shift of P2 vs. P1(1,1) and P1(2,1) by A and decompose

it into three vector components Zi, Ké, Zs along the directions of

P1(1,1), P1(2,1) and P1(2,1) x P1(1,1) respectively (see Fig. 24).
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The component K3 ig normal to the plane defined by 'I-"l(l,l) and

.51(2,1) and also to the vector C. Accordingly its contribution to the

sum(SL + &M) is also normal to C and so the dot product is zero:

T 6T+ 6, =0
3

The effect of Kl on the sum (8L + &M) can be represented by the equiva- g
lent parallel shifts of P1(1,1) and P1(2,1) in the opposite direction. |
The magnitudes of SL and 8M due to Kl are as follows (Al = |Kll):

|6T| = A, siny - 0

3

-a—,frp—f(l,l)l = A

1

o (=
5—,-f|p1<2,1)| = A cos y i

— 2
| M| =\/Al - A12 cos?y = A, siny

The magnitudes of 6L and &M being the same and by inspection of Fig. 23

we get finally

6L + 6M = 0

A similar proof can be derived for 2\-2.

Thus we see that although the shift of the geocenter, K causes

I Y N

local variations in the orientation and the magnitude of P1 vectors, it

has no effect on the distance between Pl (surface) points.
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INVESTIGATIONS ON THE HIERARCHY OF REFERENCE FRAMES g

IN GEODESY AND GEODYNAMICS %

PART III: SCALE SYSTEMS: THE S-TOWER

I T

by
Erik W. Grafarend
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The third hierarchic structure in Euclid space:
the tower of geodetic scale systems

0. Introduction

While the hierarchic structures which rule orientation

and origin (rotational and translatiorzl degrees of freedom)
have been presented with respect to space-time geodesy in

E. Grafarend (1978 a, b) and E. Grafarend, I. Mueller, H. Papo
and B. Richter (1979), the third hierarchic structure wi.l be
introduced here, namely scale. Auy vector space is furnished
with the topological notion of length, here the lengths

of geodetic reference vectors like the length of the gravity
vector, of the rotation vector, of *he ecliptic normal, etc.
Beside directional parallelism scale parulielism is needed, a
notion introduced by H. Weyl (1952 p. 121-138).

Spacelike and timelike changes of fundamental geodetic length
with respect to a fixed length or scale unit (unit length, unit
time and others) will be studied, extending first results of
refraction studies in E. Grafarend (1976) where Weyl-geometry
was used. The variations will be finally applied to the three
base vector system (I', 2, ¥) which establishes three-dimensional
geodesy. As a special technique polar and singular value decompo-
sition are used in order to separate angular and dilatational
distortions. The results can be embedded into the general theory
of deformations introduced by C. Boucher (1978).
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1. The local structurc of the scale system

From the differential point of view two derivations of the
basic scale structure in Luclid space are given. The relation
to Weyl geometry is emphasized.

1.1

llere, let us introduce v(x,y,z,t), a four-dimensional or
space-time vector field which is a function of space-time
coordinates x]=x, x2=y, x3=z, x4=t in Euclid space. The vector v
is represented twofold, firstly with respect to an orthonommal
triad (91,532,33) such that its coordinates are (0,0,v) where

v is the length of the vector, secondly, with respact to an
orthonormal triad (91‘"’92“ ’£3°) which is fZaoed in space-time

or tnvariant with respect to a translation in space-time. The
base vectors are related by a rotation, Eo 78 = Rgo, where R
is a threedimensional rotation matrix. Space - and/or timelike

variations are studied by differentiation:

o

. €1 €10
(N v =10,0,v) ¢ | =(0,0,5v )R |es
L3 £3°
$1 de,
1{2) dv = (0,0,dv) g (0,0,V) dgz =
~ e
~3 ~3
€10 €10
d{(0,0,svo)} R €0 + (0,0,svo) d{R €50 }o=
S3° $30
o0 o e g1
{O,O,dsv0 + s dvo)} R €0 | * (0,0,svo) {drR €00 * R de,
S30 S d%:J
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The length of the wector v has been expressed by the

product of a avale furtor s and a fiodaomental longth Vo

For example, a length of 10 m is the product of the scale
factor s = 10 and the fundamental length Vo © I'm. In addition
to the translational invariance of the Jirecriovr e fommoe
dtten @ we will assume that the fundamental length v,

is invariant with respect to translation,too. Thus beside

the postulate of directional parallelism dgu = Q we have the
coctdare of aeale parallellom d\'O = 0. These postulates lead
to a variation of the vector field v given by

Hl’fl
[(3) dv = (0,0,dv) F0,0,v)  Lde, =
d‘c.\
2‘1 T To , -
{(O,O.uL\'\'O)} R e, |+ (0,0,sv)){uﬂ{ Oy =
o ¢ el
3
! “ ple”
{(0,0,dss v} L‘,—i + (0,0,v) dRR™ ¢,
°3 | °3
or
14) dv = Jds sy
1(5) de, = drR! I3

Note that R is an orthogonal matrix, IR| = +1, or R.-l = R'.
A verbal formulation of the fundamental result is this: The
length of a vector v is changed wnder directional and scale
parallelism proportional to the change of scale factor and
the length itself, but inwverse proportional to the scale
factor. The orientation of the reference system ¢ is changed
under directional and scale parallelism proportional to the
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change of directional parameters within the rotation
matrix R and the base vectors e, itself, but inverse pro-
portional to the rotation matrix.

Fig. 1 illustrates the degrees of freedom of type trans-
lation, rotation, scale or origin, orientation, scale.

fro fr Parallel transport of dirvections
1€e s €aas t‘;a,' and length unit v

230

origin
or
point py

vixe+dx,ysdy, z+dz,t)
spacelike
\L(x,y,z,hdﬂ
timelike

yxyzh

€0
point pont 42 1
plx,y.2,t) pix+dx,y+dy, z+d2,
or
pix,y,z, t+dt}
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Another derivation of the fundamental differential equatiocns
1(4), 1(5) originates directly from the group of transform-
ations. According to Fig. 2 let us denote by«“(xo’yo’zo’to)

a vector at a space-time point x,y,z,t. Both vectors coincide
if we change orientation and scale by

1(6)

1(7)

or
dv
de,

it

vix,y,z,t) = s R v(x,,y

O,ZO’tO)

dy = dveg +vdeg = (dss | +dRR Dy

v

dR R €

Fig. 5 illustrates the different postulates of parallel
transport of directions and scale.

Fia, 2:

Degrees of freedom of t i
s e X
rotation, scale Ype translation,

origin
or
point p,

L"ochczc afo’ “ !(XO ,yO ,20 ,fo)

\/—\
w’ scale

translation Vix, y.Z,h

point Q\f
Plxg¥e.2 4 pixy.z.t)
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RE [}irec;ions and scale under translational
invariance: dgo =0, dvo =0

franslation

S
Yo Yo
scale at parallei
point transported
PiXg Yo :2aity! scale at
point
pix,y,z,t)
e.q. e.g
im 1m
translation
—>
("ol!2°u£3°)l (g1°,szo,gao)l
directions at paratlet
point transported
P{Xa,Yo.20.t0) directions at
peint
pix,y.z,t}

1.3

The classical treatment of length variation in différcntial
geometry is based on the quadratic fom v2 = 1|v|)z of the
vector v. dv2 and dv are obviously related by

2

1(8) dv® = 2v dv

-1 2
1(9) dv = -2—\7—‘ dv
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1(10) ; d “V‘HZ = “v IPdins = l|v "7 Ans gyl
- ' ax*

2. The global structure of scale systems

From the integral point of view a derivation of the basic
scale structure in Euclid space is given. The invariance of
observables under the group of transformations is emphasized.

2.1

llere let us introduce two vectors v(x ,yo,zo,t ) and
v(x,y,z,t) at space-time points x A to and x,y,z,t,
respectively, which are parallel under a translation. Both

vectors coincide if we change orientation and scale by

21 vix,y,z,t) = sRVI(X,Y,,2,,t,)

0’70’ o
2(2) 55)7()(,}’,2,1') = .\/:(XO+GX’YO+6Y":O+6"’ ) - V(X ’yO’ZO tO)
2(3) th(x,y,z,t) = v(x 5 YorZgr tot 5t) - v(x Y02 20 to)

/)

8.V, is called spacelike variation, th;tinelike variation.

Let us introduce the rotation parameters by

2(4) R = Ry(4,9,0) = R;(0) chg ~2) Ry (A)

2(5) RE(A+6A,¢+6¢,O) = RE(A,¢,O)

1 +8A +Cos A§®
-GA 1 +sin A8 *

-Ccos ASd -sin AS¢ 1

where ~, indicates temms of second order.
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2(6) &y = és s ¥+ Rg(h,e,0) 8A RE(4,9,0) v

where the antisymmetric matrix -A can be represented by

0 +SA +cos Add
2(7) 6A = =8A 0 +sin AS¢
-cos Ao -sin A6 0

2(8) a = RE(A,¢,O) SA R}'E(A,cb,O) =

N +8A sin ¢ +35¢
~-5A sin ¢ 0 -8A cos ¢
-89 +8A cos ¢ 0
2(9) v = s sy

2(10) se = qe

2.2
We will prove next that positional angles and lengths ratios
are invariant with respect to the underlying similarity

transformation

il
47}
=
<

+

2011 v =Ty

2
T(Vp-¥p)s Tz M)> 87U~V "R'R(vzY)

2(12) = — .
Tyl ugv ) s [y o Vs |l

V7V V3TV,

VvV q.e.d
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h.r(’\:z_yl)h s ‘/((VZ-V])' R'R (VZ-V] )1 - ” Y,z-\,] H

2(13) =
V3V H

q.e.d.

”T(vs-vl); 8 /Tvs—y])'R'R (vs—y‘)‘

#7g. 4 1is an illustration of the invariance of positional
angles and lengths ratios in a space-time triangle. Related
commutative diagrams for translation, rotation and scale are
given in iy, &

3. Examples

Threedimensional geodesy will be based on three base vectors,
namely [T, @, ¥]', located at the topocentre and referring to

the vector fields of gravity, rotation and eliptic normal. The
base vectors are neither orthogonal nor normalized., The gravity
vector determines the local vertical. The rotation field is
constructed from the inertial velocity vector v of the topocentre
by vorticity Q= 1oty changing in space and time due to plate
rotations and the dynamics of the planetary system. The eliptic
nomal is defined by the binormal vector of the curve of the mass
centre of the earth in inertial space. The base vectors will be
referred to a base vector system at initial epoch zero and space
point zero, in detail by

3N T I T'a
s = RU o = VR Qe
¥ ¥ ¥

which corresponds to a systematic set-up of type

v
b
]
'
v

U = =
3(2) Yy RU.}IIO VR,\YO'
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Fig. 4: Space-time triangle
VO po
s s+0s
elx,y,z,t) vix,y, z,t) pix,y,z, t)

elx,y, z, t+b¢) vix,y,z,t+0t)
or or
e(x+0x,y+ by, z+62,t) v(x+Ox,y+0y,z+621)

Fig. §: Commutative diagrams for degrees of
freedom of type rotation, scale and
translation
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It includes the polar decomposition (Cauchy decomposition)
where R is a rotation matriz (|R| = + 1), U and V are right
and left stretoh matrices being symmetric. The matrices are
related by

3(3) V. = RUR'&e RVR = U,

A singular value decomposition of the stretch matrices is

Ty - rkn
NCI A Rv\ Rv
3(5) U = RUR

u ou
where

A(0) V¥ = diag (Vis Vs, Vi)

3(7) UX*= diag (u], u,, US)

and Vis Vo Vg and Uy, U,, Ug are cigen-values.
38) v o= RRUTR' v, = RVRIRy

leads to variations of tvpe spacelike and/or timelike

3(9) dy = (dRU + RdU)yo = (dVR + VdR)Xo =
(dRR' + RAU U™ Ry = (@ + vaRR'V Ty
or
X -1
- " * .
5(10) dy = {dRR' + R(ARMR! + R URR! + R dURRVIR U 'R'R}y

A r-‘t-] /'-]
{(dR V'R + R V*dR) + R dV*R')R V¥"'R' + VARR'V '}y,
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3(11) du = dRuU’R& + R UMdR! + RudU’Ra
3(12) dv = deV*RG + R V¥R + R dR

3(13) dv = dR R' y + (RR U*R! + RR U¥dR')R diag(%1, %2, %S)R&Rx

. . 1T 1 1
+ RRu dlag(dul, duz, du3) diag (51, T, as)RﬁR'M

3(14) dy = {dR, diag(vy, v,, VZ)R! + R, diag (v, v,, VS)dRG}RV

13 11 1 ypr . . , .
diag (V1’ ?2’ Vg)RV v+ RV diag (d\1, d\z, dvs) |
) i
. 1 ] 1 ' y -1 ’ 1
dlag (‘",'1 ’ '\72, VS)RVY-' + VdRR'V -}, :

The tensors ]

2 2
3(15) ¢ = U, B =V

will be calledright and left deformation matrices (Cauchy-Green
matrices) which can be represented by

2

H

‘ 3(16) ¢ = RUMR' =R diag (u,%, u,2, u,9)R!
# u u u g 1722737y

i

3017 R V*Z R di 2 2 2.0y
3(17Y B = . Rv , diag (v1 » Vo' Vg )RV

What is the sense of all these strange computations?

At first we have rotated the three bhase vactors by a proper
rotation matrix R. Secondly we have stretched the three base
vectors by the matrices U and V, respectively. The singular
value decomposition allows the separation of angular and scale

) distortion, By the matrices Ru and Rv’ respectively, we have
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rotated the matrices U and V, respectively, into their
principal directions. Along the principal dir.ctions there

is only a change in scale of the three base vectors

[T, @, ¥]'. Thus we have found a decomposition into shear

and dilatation, the off- and diagonal elements of the
deformation matrices if we use this temminology. In general,
the space-time change of geodetic base vectors can therefore

be understood as a change in origin (translation), orientation
(rotation) and scale. Fixed or translational invariant is al-
ways the base vector system EIO, I3 301. In geodetic applicat-
tions, the nine elements which describe the space-time change
of a triplet of hase vectors is parameterized in a slightly
different way: The base vector @ of rotation is projected onto
the plane rectangular to the base vector I'; the direction is
called south. Orthogonal to south within this plane we direct
east, equivalently by the vector product AT, the normalized
triad as the final product is called the horizontal one. By a
similar process applied to .. and - we arrive at the eguatorial
triad. Angular parameters which commect these triads are always
of type longitude and latitude. Totally there are siz angles which
connect the system of base vectors [y,lg, g]', which span the
geodetic three-dimensional Euclid space locally, and the one
[yo, 90, XO]. In addition, there is a space-time change of lengths
Hzhs W gl | ¥l parameterized by three scale factors referring to
a fixed length system ”5Oﬂ,|ngl, lgo“.
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