16,928 research outputs found

    Indicated mean-effective pressure instrument

    Get PDF
    An apparatus for measuring indicated mean effective pressure (IMEP) of an internal combustion piston or rotary engine or of an external combustion engine such as a stirling engine is disclosed. An optical shaft encoder measures crankshaft angle of the engine. Changes in volume with respect to changes in crank angle of one or more cylinders (dV/d theta) is determined either empirically or algebraically from engine geometry and stored in a memory. As the crank angle changes, dV/d theta) is read from the memory and multiplied by chamber or cylinder pressure. The product (P dv/d theta) is then added to the total previously accumulated in the cycle. Each time theta changes by an amount equal to delta theta, the process is repeated. At the end of each engine cycle, the total is equal to the IMEP value for that cycle

    Development of an instrument for real-time computation of indicated mean effective pressure

    Get PDF
    A new instrument capable of computing in real time the per-cycle indicated mean effective pressure (IMEP) of internal combustion engines and compressors was designed and tested. The values of IMEP obtained with the new instrument were found to be in excellent agreement with values obtained by previous postrun data reduction techniques

    Antarctic lakes (above and beneath the ice sheet): Analogues for Mars

    Get PDF
    The perennial ice covered lakes of the Antarctic are considered to be excellent analogues to lakes that once existed on Mars. Field studies of ice covered lakes, paleolakes, and polar beaches were conducted in the Bunger Hills Oasis, Eastern Antarctica. These studies are extended to the Dry Valleys, Western Antarctica, and the Arctic. Important distinctions were made between ice covered and non-ice covered bodies of water in terms of the geomorphic signatures produced. The most notable landforms produced by ice covered lakes are ice shoved ridges. These features form discrete segmented ramparts of boulders and sediments pushed up along the shores of lakes and/or seas. Sub-ice lakes have been discovered under the Antarctic ice sheet using radio echo sounding. These lakes occur in regions of low surface slope, low surface accumulations, and low ice velocity, and occupy bedrock hollows. The presence of sub-ice lakes below the Martian polar caps is possible. The discovery of the Antarctic sub-ice lakes raises possibilities concerning Martian lakes and exobiology

    High-temperature ''hydrostatic'' extrusion

    Get PDF
    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion

    On the formation time scale and core masses of gas giant planets

    Full text link
    Numerical simulations show that the migration of growing planetary cores may be dominated by turbulent fluctuations in the protoplanetary disk, rather than by any mean property of the flow. We quantify the impact of this stochastic core migration on the formation time scale and core mass of giant planets at the onset of runaway gas accretion. For standard Solar Nebula conditions, the formation of Jupiter can be accelerated by almost an order of magnitude if the growing core executes a random walk with an amplitude of a few tenths of an au. A modestly reduced surface density of planetesimals allows Jupiter to form within 10 Myr, with an initial core mass below 10 Earth masses, in better agreement with observational constraints. For extrasolar planetary systems, the results suggest that core accretion could form massive planets in disks with lower metallicities, and shorter lifetimes, than the Solar Nebula.Comment: ApJL, in pres

    Modular instrumentation system for real-time measurements and control on reciprocating engines

    Get PDF
    An instrumentation system was developed for reciprocating engines. Among the parameters measured are the indicated mean effective pressure, or theoretical work per cycle, and the mass fraction burn rate, a measure of the combustion rate in the cylinder. These computations are performed from measured cylinder pressure and crankshaft angle and are available in real time for the experimenter. A 100 or 200 consecutive-cycle sample is analyzed to reduce the effect of cyclic variations in the engine. Data are displayed in bargraph form, and the mean and standard deviation are computed. Other instruments are also described

    The Arp Ring: Galactic or extragalactic?

    Get PDF
    The Arp Ring is a faint, loop-like structure around the northern end of M81 which becomes apparent only on deep optical photographs of the galaxy. The nature of the Ring and its proximity to M81 are uncertain. Is it simply foreground structure, part of this galaxy, or is it within the M81 system? Infrared Astronomy Satellite (IRAS) maps of the region show a far-infrared counterpart of the Ring. The infrared data are compared with previous optical and radio observations to try to ascertain its physical nature. The poor correlation found between the common infrared/optical structure and the distribution of extragalactic neutral hydrogen, and the fact that its infrared properties are indistinguishable from those of nearby galactic cirrus, imply that the Arp Ring is simply a ring structure in the galactic cirrus

    Towards a Comprehensive Fueling-Controlled Theory on the Growth of Massive Black Holes and Host Spheroids

    Get PDF
    We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported in the nuclear (central kpc) regions of galaxies. We study the gas fueling onto the inner accretion disk (sub-pc scale) and the star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulation of gas fueling that is mainly depleted by star formation naturally satisfy the `M_BH - $M_virial' relation, with a scatter considerably less than the observed one. We found a generalized version of Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate (dot{M}_gas = dot{M}_BH + dot{M}_SF) is the one that scales as M_gas/t_orbital. We also found that the `M_BH - sigma' relation is a byproduct of the `M_BH - M_virial' relation in the fueling controlled scenario.Comment: 12 pages, figures, submited to ApJ, email: [email protected]

    Experimental analysis of IMEP in a rotary combustion engine

    Get PDF
    A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm
    corecore