9,446 research outputs found

    Critical Fields and Critical Currents in MgB2

    Full text link
    We review recent measurements of upper (Hc2) and lower (Hc1) critical fields in clean single crystals of MgB2, and their anisotropies between the two principal crystallographic directions. Such crystals are far into the "clean limit" of Type II superconductivity, and indeed for fields applied in the c-direction, the Ginzburg-Landau parameter k is only about 3, just large enough for Type II behaviour. Because m0Hc2 is so low, about 3 T for fields in the c-direction, MgB2 has to be modified for it to become useful for high-current applications. It should be possible to increase Hc2 by the introduction of strong electron scattering (but because of the electronic structure and the double gap that results, the scatterers will have to be chosen carefully). In addition, pinning defects on a scale of a few nm will have to be engineered in order to enhance the critical current density at high fields.Comment: BOROMAG Conference Invited paper. To appear in Supercond. Sci. Tec

    Measurement of the degree of Polarization Entanglement Through Position Interference

    Full text link
    We produce polarization entangled states with variable degree of entanglement for twin photons. Entanglement in polarization is coupled to entanglement in position that produces transverse coincidence interference fringes. We show both theoretically and experimentally that, due to this coupling, we can use the interference pattern to measure the polarization degree of entanglement.Comment: 5 figure

    The role of Bi2O3 on the thermal, structural and optical properties of tungsten-phosphate glasses

    Get PDF
    Glasses in the ternary system (70 – x)NaPO3-30WO3-xBi2O3, with x = 0–30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 °C for 0 ≤ x ≤ 15 mol % and decreases to 417 °C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 °C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi–O–P linkage. Furthermore, up to 15 mol % of Bi2O3 formation of BiO6 clusters is observed, associated with Bi–O–Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n0 ≤ 1.88, n2 ≥ 10–15 cm2/W and NL absorption coefficient, α2 ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure

    Repulsive Core of NN S-Wave Scattering in a Quark Model with a Condensed Vacuum

    Get PDF
    We work in a chiral invariant quark model, with a condensed vacuum, characterized by only one parameter. Bound state equations for the nucleon and Delta are solved in order to obtain an updated value of their radii and masses. Nucleon-nucleon S-Wave scattering is studied in the RGM framework both for isospin T=1 and T=0. The phase shifts are calculated and an equivalent local potential, which is consistent with K-N scattering, is derived. The result is a reasonable microscopic short range repulsion in the nucleon-nucleon interaction.Comment: 23 pages in latex revtex, 4 Postscript figure

    New high level application software for the control of the SPS-LEP beam transfer lines

    Get PDF
    New high level application software is being developed for the control of the SPS and LEP Transfer Lines. This paper briefly describes the model for the operation of these Transfer Lines, which is largely based on previous experience gained during the development and upgrades of the SPS and LEP control systems. The software system is then presented, followed by a description of the high level applications for the control room operators. Tools and methods used for the design and implementation of the system are mentioned

    Anomalous diffusion in a symbolic model

    Full text link
    We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach revealed a rich diffusive scenario characterized by non-Gaussian distributions and, depending on the power law exponent and also on the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare with the numerical data, finding a good agreement. Because of its simplicity and flexibility, this model can be a candidate to describe real systems governed by power laws probabilities densities.Comment: Accepted for publication in Physica Script

    Scalar Casimir Effect on a D-dimensional Einstein Static Universe

    Full text link
    We compute the renormalised energy momentum tensor of a free scalar field coupled to gravity on an (n+1)-dimensional Einstein Static Universe (ESU), RxS^n, with arbitrary low energy effective operators (up to mass dimension n+1). A generic class of regulators is used, together with the Abel-Plana formula, leading to a manifestly regulator independent result. The general structure of the divergences is analysed to show that all the gravitational couplings (not just the cosmological constant) are renormalised for an arbitrary regulator. Various commonly used methods (damping function, point-splitting, momentum cut-off and zeta function) are shown to, effectively, belong to the given class. The final results depend strongly on the parity of n. A detailed analytical and numerical analysis is performed for the behaviours of the renormalised energy density and a quantity `sigma' which determines if the strong energy condition holds for the `quantum fluid'. We briefly discuss the quantum fluid back-reaction problem, via the higher dimensional Friedmann and Raychaudhuri equations, observe that equilibrium radii exist and unveil the possibility of a `Casimir stabilisation of Einstein Static Universes'.Comment: 37 pages, 15 figures, v2: minor changes in sections 1, 2.5, 3 and 4; version published in CQ

    Metal-Insulator Transition in a Disordered Two-Dimensional Electron Gas in GaAs-AlGaAs at zero Magnetic Field

    Full text link
    A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resistances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.Comment: 4 pages, 3 figures, 21 reference
    • …
    corecore