149 research outputs found

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    Failure of a repeat course of cyclooxygenase inhibitor to close a PDA is a risk factor for developing chronic lung disease in ELBW infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment regimen or protocol for managing a persistent patent ductus arteriosus (PDA) in extremely low birth weight (ELBW) infants has not been well established. This study was aimed at evaluating the failure rate of a cyclooxygenase (COX) inhibitor (COI) for PDA closure and to determine the incidence of a PDA requiring ligation in ELBW infants. We examined the clinical characteristics and risk factors that may predict the clinical consequences of failure of PDA closure by COI.</p> <p>Methods</p> <p>Medical information on 138 infants with birth weight (BW) < 1000 gm who survived for > 48 hours was retrieved. Clinical characteristics and outcomes of patients whose PDAs closed with COI were compared with those who did not close.</p> <p>Results</p> <p>Of the 138 patients, 112 survived to discharge. Eighty (71.4%) of those who survived received 1-3 courses of COI treatment for a symptomatic PDA. A total of 32 (40%) failed COI treatment and underwent PDA ligation. Multivariable logistic regression analysis suggests that the observed differences in the outcomes in infants with or without symptomatic PDA can be explained by the babies with symptomatic PDA being more immature and sicker. No significant difference was seen in the incidence of chronic lung disease (CLD) in infants whose PDA was treated medically versus those who failed medical treatment and then underwent ligation. However, after adjusting for disease severity and other known risk factors, the odds ratio of developing CLD for surviving babies with a persistent PDA compared to those whose PDA was successfully closed with 1-2 courses of COI is 3.24 (1.07-9.81; p = 0.038).</p> <p>Conclusions</p> <p>When successfully treated, PDA in ELBW infants did not contribute significantly to the adverse outcomes such as CLD, retinopathy of prematurity (ROP) and age at discharge. This suggests that it is beneficial for a hemodynamically significant PDA to be closed. The failure of a repeat course of COI to close a PDA is a major risk factor for developing CLD in ELBW infants.</p

    FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms

    Get PDF
    Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγand MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E2 levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis

    ATP Depletion and Cell Death in the Neonatal Lamb Ductus Arteriosus

    No full text
    Postnatal constriction of the full-term ductus arteriosus produces cell death and remodeling of the ductus wall. Using a bioluminescence imaging technique, we found that after birth, the lamb ductus develops ATP, glucose, and glycogen depletion in addition to hypoxia. In vitro studies showed that cell death correlates best with ATP depletion and is most marked when both glucose and oxygen are severely depleted; in addition, the degree of ATP depletion found in vivo is sufficient to account for the extensive degree of cell death that occurs after birth. Under hypoxic conditions, the immature ductus is more capable of preserving its ATP supply than the mature ductus as a result of increased glucose availability, glycogen stores, and glucose utilization. However, the immature ductus is just as susceptible as the mature ductus to ATP depletion when glucose supplies are restricted. The extensive degree of cell death that occurs in the newborn ductus after birth is associated primarily with ATP depletion. The increased glycolytic capacity of the immature ductus may enable it to tolerate episodes of hypoxia and nutrient shortage, making it more resistant to developing postnatal cell death and permanent closure
    corecore