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Abstract—In this study, hemodynamic performance of three
novel shunt configurations that are considered for the surgical
repair of tetralogy of Fallot (TOF) disease are investigated in
detail. Clinical experience suggests that the shunt location,
connecting angle, and its diameter can influence the post-
operative physiology and the neurodevelopment of the
neonatal patient. An experimentally validated second order
computational fluid dynamics (CFD) solver and a parametric
neonatal diseased great artery model that incorporates the
ductus arteriosus (DA) and the full patient-specific circle of
Willis (CoW) are employed. Standard truncated resistance
CFD boundary conditions are compared with the full
cerebral arterial system, which resulted 21, �13, and 37%
difference in flow rate at the brachiocephalic, left carotid, and
subclavian arteries, respectively. Flow splits at the aortic arch
and cerebral arteries are calculated and found to change with
shunt configuration significantly for TOF disease. The central
direct shunt (direct shunt) has pulmonary flow 5% higher
than central oblique shunt (oblique shunt) and 23% higher
than modified Blalock Taussig shunt (RPA shunt) while the
DA is closed. Maximum wall shear stress (WSS) in the direct
shunt configuration is 9 and 60% higher than that of the
oblique and RPA shunts, respectively. Patent DA, signifi-
cantly eliminated the pulmonary flow control function of the
shunt repair. These results suggests that, due to the higher
flow rates at the pulmonary arteries, the direct shunt, rather
than the central oblique, or right pulmonary artery shunts
could be preferred by the surgeon. This extended model
introduced new hemodynamic performance indices for the
cerebral circulation that can correlate with the post-operative
neurodevelopment quality of the patient.

Keywords—Congenital heart disease, Blalock Taussig shunt,

Circle of Willis, Pre-surgical planning, Hemodynamics,

Computational fluid dynamics.

INTRODUCTION

The primary surgical repair of common congenital
heart defects (CHD), particularly the tetralogy of
Fallot (TOF), pulmonary artery atresia (PAA), and
hypoplastic left heart syndrome (HLHS), involve the
reconstruction of palliative vascular shunts that are
anastomosed between the aorta and the pulmonary
arteries (1st stage shunt surgery). Studies demonstrated
poor functional outcome with reduced exercise
capacity, diminished cardiac output, and risks of heart
failure after the surgical repair.10,53,54 Furthermore, the
post-operative shunt hemodynamics is not stable due
to vascular growth, collateral vessels, and the post-
operative management strategy.13,38

Although there is no consensus on the hemody-
namic evaluation criteria that can correlate with the
post-operative performance of the 1st stage shunt
surgeries,50 computational fluid dynamics (CFD) sim-
ulations are proven useful in improving the hemody-
namics of the 3rd stage shunt surgeries.9 Similar
studies that investigate the hemodynamics of the 2nd
stage shunt surgeries7,40 as well as the 1st stage surgical
palliation are relatively rare.3–5,23,24,30,44 Furthermore
the existing studies focused entirely on the surgical
repair of HLHS48 in which the Norwood (innominate
artery or the aorta shunt to the right pulmonary ar-
tery) and Sano (right ventricle to pulmonary artery
shunt) shunt variations are analyzed.30 However the
3D arterial geometry of CHD constitutes a spectrum of
anatomical templates,39 in which HLHS represents
only one of the extreme anatomical configurations.
The other opposite anatomical extreme is the TOF
disease anatomy.1,19 Unlike HLHS, the TOF disease
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template has a large aorta and under developed pul-
monary arteries. It is composed of a ventricular septal
defect, right ventricular hypertrophy2,16 and occurs in
3 out of 10,000 live births.2 Thus, the lack of com-
prehensive 1st stage shunt surgery planning investiga-
tions on TOF disease anatomy motivates the present
manuscript.

Another focus of the current study is the Circle of
Willis (CoW) region of the anatomy since the com-
putational studies available from literature that inves-
tigate the first-stage shunt surgeries overlooked the full
detail of the cerebral great vessel circulation system,
particularly the CoW section,32 to our knowledge. In
this manuscript we hypothesize that the neonatal
cerebral arterial hemodynamics is critical for the 1st
stage patient-specific pre-surgical shunt design. Unlike
the adult cerebral circulation, for the newborn baby a
large percent of the total cardiac output may be
delivered to the brain—50% in neonates versus 15% in
adults.41 Optimal intra- and post-operative cerebral
arterial perfusion is also critical for the normal neu-
rodevelopment of the newborn CHD patient. Among
fetuses with single ventricle anomalies, lower cere-
brovascular resistance was associated with higher
neurodevelopmental (ND) scores.55 Indeed, ND dys-
function has become the most common and potentially
the most disabling outcome of CHD repair,34 including
high prevalence of low-severity developmental prob-
lems in the areas of language, motor skills, attention,
and executive function.33 Neurodevelopment-associ-
ated impairment may occur in up to 70% of survivors
as they grow through childhood.26 These recent clinical
facts18 prompted the present investigation where
potential cerebral perfusion changes due to different
shunt configurations are studied in detail.

Patent ductus arteriosus (PDA) accounts for
approximately 10% of all CHDs with an incidence of
at least 2–4 per 1000 term births.14 DA plays an
important role in the 1st stage palliation of congenital
heart diseases and can be left open clinically both pre
and post- operative stages as a hybrid therapy.14 Al-
though a moderate size patent DA should be closed by
the time the patient is 1–2 years old, the decision of
DA closure at the neonatal period remains uncertain.6

In the present manuscript, we studied both the patent
DA and closed DA states in order to provide insight to
the surgeons on the role of DA in shunt hemody-
namics.

Thus, in this manuscript we study the pre-surgical
planning of 1st stage shunt operations through a 3D
model of cardiovascular system including neck and
cerebral arteries (CoW region). Resistance boundary
conditions are assigned both to the artery outlets and
inlets to represent the flow competition between the
outflow trunks and the downstream organs. Three

different shunt configurations designed by pediatric
cardiovascular surgeons are implemented into our
model. Furthermore, these shunt configurations are
studied in two different PDA stats: when the DA is
open and functioning and when the DA is totally
closed and not functioning.

The present manuscript is organized as follows; in
‘‘Materials and Methods’’ section, together with the
details of the CFD solver, the 3D reconstruction of
realistic geometry cardiovascular system and CoW
region and shunt configurations designed by surgeon
as post-surgery anatomy post-surgery anatomy for
surgical planning are described. In ‘‘Results’’ section,
flow splits and wall shear stress (WSS) distributions are
presented for the three shunt configurations using TOF
disease template including CoW region. Also the
closed and patent DA states are examined for all three
shunt configurations. In ‘‘Discussion’’ section, the
post-surgery results of shunt configurations and DA
states are compared and analyzed in detail. The limi-
tations, assumptions of our approach and their ade-
quacy are provided at the separate ‘‘Limitations’’
section. Finally, the surgical interpretations of the key
findings are stated in ‘‘Conclusions’’ section.

MATERIALS AND METHODS

3D Geometry (Aortic Arch, Neck and Cerebral
Arteries)

A realistic 3D aortic arch anatomy of TOF is
established based on our previous anatomical recon-
structions8 where the left ventricle aortic outflow
diameter is significantly less than normal, representing
a symmetric diffuse stenosis39 (Fig. 1). Vessel dimen-
sions of this idealized model have been validated rig-
orously and employed in our earlier hemodynamic
investigations involving the neonatal stage.8,27,28,37

This anatomical template has a long publication his-
tory and its evolution is available in the Supplementary
Material (Appendix A). For the present study, the
anatomical TOF template was further improved by
adding the cerebral arteries including the CoW using a
magnetic resonance imaging (MRI) scan of a healthy
young adult through approved institutional review
board (IRB). The original cerebral geometry is scaled
down 1.7 times, so that the connecting head-neck
arteries are consistent with the neonatal aortic arch
dimensions (Fig. 1). The cerebral anatomical dimen-
sions are further validated here through the clinical
neonatal cerebral measurements as summarized in the
Supplementary Material (Appendix A). Nomencla-
tures of all the vessels involved are presented in Ta-
ble 1. The coupled anatomy was created using
Geomagic (Geomagic Inc., NC, USA).
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FIGURE 1. (a) Realistic anatomical model of neonatal great arteries of tetralogy of Fallot (TOF) coupled to the Circle of Willis (CoW),
close-up shown in (b). Section a–a, shown in dashed lines indicates aortic isthmus; the velocity profile location of mesh convergence
figure (see Supplementary Material, Figure B). (Aao: Ascending aorta, Dao: Descending aorta, MPA: Main pulmonary artery, RPA: Right
pulmonary artery, LPA: Left pulmonary artery, IA: Innominate artery, SA: Subclavian artery, RVA: Right vertebral artery, LVA: Left
vertebral artery, RACA: Right anterior cerebral artery, LACA: Left anterior cerebral artery, RMCA: Right middle cerebral artery, LMCA:
Left middle cerebral artery, RPCA: Right posterior cerebral artery, LPCA: Left posterior cerebral artery.) The CoW region features the
anterior communicating artery (ACoA), the right posterior communicating artery (RPCoA) and left posterior communicating artery
(LPCoA). The cerebral arteries have six outlets: RACA, LACA, RPCA, LPCA, RMCA and LMCA. The coupling of both anatomical models
is performed using our in-house SketchCAD software.12 The reconstructed neck arteries include the right carotid artery (RCA), left
carotid artery (LCA), RVA, LVA and basilar artery (BaA). This complex arterial manifold has two inlets; Aao and MPA and five outlets;
Dao, RPA, LPA and three neck arteries (brachiocephalic artery (BA) or IA, LCA and SA). For simulations, the ductus arteriosus (DA) is
included and connected to the transverse arch for simulating patent ductus (PDA) and removed in models that employ ligated DA.

TABLE 1. List of acronyms corresponding to the full names of the major vessels investigated.

Abbreviation Full name BC type

Arteries at aortic arch

Aao Ascending aorta Resistance

Ao Aorta Inlet-Resistance

DA Ductus arteriosus Internal

PDA Patent ductus arteriosus Internal

Dao Descending aorta Resistance

LPA Left pulmonary artery Resistance

RPA Right pulmonary artery Resistance

MPA Main pulmonary artery Inlet-Resistance

Arteries belong to the neck region

IA Brachiocephalic (innominate) artery Internal

BaA Basilar artery Internal

SA (Left) subclavian artery Resistance

LCA Left carotid artery Internal

RCA Right carotid artery Internal

LVA Left vertebral artery Internal

RVA Right vertebral artery Internal

Arteries belong to the cerebral region

ACoA Anterior communicating artery Internal

RPCoA Right posterior communicating artery Internal

LPCoA Left posterior communicating artery Internal

RACA Right anterior cerebral artery Resistance

LACA Left anterior cerebral artery Resistance

RMCA Right middle cerebral artery Resistance

LMCA Left middle cerebral artery Resistance

RPCA Right posterior cerebral artery Resistance

LPCA Left posterior cerebral artery Resistance

Arteries are listed in three groups: great arteries proximal to the aortic arch, arteries associated with the neck region and cerebral arteries. The

boundary condition (BC) types specified are also provided.
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Shunt Configurations and Simulated Cases

The surgical shunts were created by 3D sketching on
the computer using an in-house anatomical design
toolkit.12 Several candidate shunt configurations were
produced in collaboration with the two independent
pediatric cardiovascular surgeons and 3 of those con-
figurations were retained for the present study (Fig. 2).
Two of these surgical configurations are central shunts
constructed between the Aao and MPA. Central direct
shunt (direct shunt) corresponds to a more horizontally
configured case as opposed to a central oblique shunt
(oblique shunt) case. The third configuration is a mod-
ified Blalock Taussig (mBT) shunt (RPA shunt) that
connects the aortic arch and RPA that is retained as a
baseline. The inner diameter of the implemented grafts is
2.5 mm polytetrafluoroethylene (PTFE) conduit.

All anatomical configurations and associated CFD
simulation cases are summarized in Table 2. They in-
clude DA closure and TOF disease cases.

Inclusion of the full cerebral system improved the
predictive capability of our simulations compared to the
prior isolated aortic arch models in which the CoW flow
characteristics weremissing. These additional boundary
condition verification simulations and the resulting
performance improvements are summarized in the
Supplementary Material (Appendix B) for reference.

Boundary Conditions

Standard resistance outlet boundary conditions are
employed at truncated arterial boundaries using the
following formulation:

Po ¼ Qo � Ro þ Pa �
1

2
q
Q2

o

A2
o

ð1Þ

where Po is the assigned outlet pressure boundary
condition, Qo the flow rate at the outlet, Ro the resis-
tance value, Pa the atrium pressure and Ao the area of
the outlet. The resistance values for neonatal aorta
have already been calculated in our previous studies by
matching the physiological flow distributions for
neonates.8 For cerebral outlets, these values are
slightly adjusted as reported in Ref. 46 in order to
match the physiological pulmonary to systemic flow
rate ratio (Qp/Qs). The resistance value for each of the
cerebral arteries is assumed to be the same:
8 MPa s m�3 for RACA, LACA, RMCA, LMCA,
RPCA and LPCA.

In the Eq. (1) outlet pressure is calculated based on
the flow rate and resistance value of downstream vas-
culature and organs.

Based on the typical flow rates observed in the
clinic, at Aao and MPA a new inlet resistance velocity
boundary condition is developed. In this formulation
the flow to either the systemic or pulmonary outflow
tracts is now determined by the corresponding prede-
fined inlet resistance values, which includes the right/
left ventricle pathway and the corresponding outflow
trunk valve resistances. Thus, the flow rate is calcu-
lated based on the resistance value of the upstream
ventricle and pressure at the inlet that reads as;

Q ¼ A2
i

q
R2

i �
2q

A2
i

ðPi � PaÞ
� �1=2

�Ri

( )
ð2Þ

where Q is the flow rate at the inlet, Pi the calculated
inlet pressure boundary condition, Ri the resistance
value at the inlet and Ai the area of the inlet. The plug-

FIGURE 2. Shunt configurations analyzed in this study are
illustrated on the tetralogy of Fallot (TOF) disease configura-
tion; (a) Surgeon sketches of possible shunt configurations
employed during the 1st stage surgical reconstruction. (b)
The direct or ‘‘central’’ shunt configuration and its oblique
version connecting ascending aorta (Aao) with the main pul-
monary artery (MPA). The right pulmonary artery (RPA) shunt,
shown on top, is configured proximal to the aortic arch and
anastomosed to the RPA. RPA shunt resembles the traditional
right-sided Blalock-Taussig configuration. Shunt lengths in
the computational model are kept the same (5 mm) for unbi-
ased performance comparison. DA vessel is patent in these
3D reconstructions.

TABLE 2. Table of cases simulated for the present study.

Ductus arteriosus status Configuration

Cases

w CoW w/o CoW

Patent Direct shunt 11 12

Oblique shunt 21 22

RPA shunt 31 32

Fully closed Direct shunt 41 42

Oblique shunt 51 52

RPA shunt 61 62

6 cases are with Circle of Willis (w CoW) and 6 cases without Circle

of Willis (w/o CoW) for tetralogy of Fallot (ToF) disease template.

PISKIN et al.110



flow velocity profile is applied consistently with the
standard practice of aortic simulations.

We compared this boundary condition with the
standard constant inlet flow boundary conditions. The
results did not change for inlet pathway resistance values
that are proportional to the inlet cross-sectional areas.
However if the resistance values prior to outflow tracts
are different, as in various single-ventricle disease states,
deviations are recorded. For example, in the case of a
ventricle septal defect, this new boundary condition al-
lows the flow exchange between right and left ventricle
thus flow splits between aorta and MPA starts to
change. The sensitivity of this new inlet boundary
scheme is validated by assigning different resistance
values for the inlet of the aorta systematically. The in-
crease in aorta inlet pathway resistance decreased the
aortic flow and increased MPA flowrate respectively.

CFD Solver

A commercial CFD solver, FLUENT 15.0 (Ansys,
Inc., PA, USA) was adopted for this study. The CFD
code was configured to implement a multi-grid artifi-
cial compressibility solver for incompressible Newto-
nian flows, and employs a second-order accurate
numerical discretization scheme in space. A steady-
state simulation is performed due to the average flow
rates at the outlets are found to be sufficient to com-
pare shunt hemodynamics. Also, all Reynolds numbers
are below 1500, justifying the use of a laminar flow
solver. A diligent mesh density sensitivity analysis
followed Ref. 47, based on achieving a relative differ-
ence of less than 5% variations in velocity at Dao re-
gion just after DA (Supplementary Material,
Figure B). Grid sensitivity analysis was conducted
using grids of decreasing mesh size (starting with
1.3 mm nodes, to 0.5 mm). For a typical high-density
spatial grid with a total of ~1 M fluid nodes, with a
grid spacing of 0.7 mm, a simulation time step size of
10�5 s in physical time is required to achieve the con-
vergence. Simulations were continued until conver-
gence to 10�6 residue. The conservation of mass was
ensured of all cases having maximum 10�8 L/min dif-
ference between inlet and outlet. See the Supplemen-
tary Material (Appendix C) for the detailed mesh
verification study conducted for both the aorta and the
new CoW segments.

RESULTS

Pre- and Post-Operative Hemodynamics

Figure 3 illustrates the flow streamlines and wall
shear stress (WSS) distributions for the pre- and post-
operative direct shunt configurations. The flow struc-

ture and head-neck flow split are altered significantly
by the introduction of the shunt. Before the shunt, the
entire aortic arch flow was laminar with an average
Reynolds number of 300. However, the high velocity
gradient around the shunt, due to its small diameter
connecting to the large arterial reservoir, altered this
condition. The vorticity content is increased particu-
larly at the pulmonary trunk. Likewise, the placement
of the shunt increased the WSS levels and its distri-
bution around the aortic arch but decreased it at the
pulmonary arteries. There are significant changes in
flow rates for all the major vessels as quantified in
Table 3, particularly the cerebral arteries. Cerebral
flows increase almost two fold after the shunt is
implemented. Significant increases are observed for all
three shunt configurations with respect to the pre-
surgical configuration before the shunt anastomosis.

Comparison of Shunt Configurations

In Fig. 4, the post-operative flow structures and
streamlines are plotted for all three shunt configura-
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FIGURE 3. Comparison of the pre-operative model (anatomy
before the shunt implantation) (left column) with the post-
operative direct central shunt configuration (right column), for
the baseline tetralogy of Fallot (TOF) disease. Percentage
differences in head-neck perfusion through the individual
aortic arc vessels are labeled at the TOP RIGHT figure. Flow
path lines colored with the velocity magnitude are plotted on
the top row of the figure and enlarged images of the WSS
distributions towards the regions are plotted at the bottom.
Results are similar for the pulmonary atresia disease tem-
plate, which is not shown for brevity. (RPA: Right pulmonary
artery, LPA: Left pulmonary artery, Aao: Ascending aorta,
MPA: Main pulmonary artery, BA: Brachiocephalic artery,
LCA: Left carotid artery, SA: Subclavian artery). Velocity is in
m/s and WSS is in N/m2. Results are presented for a Qp/Qs of
0.192.
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tions. For the direct and RPA shunts the correspond-
ing flow streamlines spiral in the ascending aorta
influencing the head-neck flow split and WSS distri-
bution. For the oblique shunt, the flow in the ascend-
ing aorta is relatively laminar. According to Fig. 4, for
RPA shunt the flow produces high vorticity in both
pulmonary arteries. Vorticity in pulmonary arteries is
lower for oblique shunt configuration. Direct shunt
produces almost laminar flow in both pulmonary
arteries.

The average flow splits at the aortic arch and cere-
bral arteries for all 3 models are summarized in Ta-
ble 3. Flow rates at the pulmonary arteries change 5%
between the central direct shunt and central oblique
shunt configurations and 23% between central direct
shunt and RPA shunt configurations. The right and
left pulmonary artery flow rates are not altered sig-
nificantly for the different shunt configurations as the
symmetric flow condition is maintained. At cerebral
arteries shunt type caused about 2 and 5% differences
in flow rate for the central oblique shunt and RPA
shunt configurations, respectively. Whereas the flow
splits between right and left cerebral arteries are not
symmetric for the oblique shunt configuration (see
Table 3). Likewise, the trans-shunt flow changes up to
10%, between the direct (0.588 LPM) and the RPA
shunt (0.643 LPM). Qp/Qs for shunt configurations are
also calculated and found to be 5 and 26% different
for oblique and RPA shunts, respectively. These results
suggest that the acute post-operative hemodynamic
condition depends on the shunt configuration, and

shunt configurations change the flow rates substan-
tially.

Results presented in Table 3 correspond to a patient
with a very high pulmonary vascular resistance value
of 8 MPa s m�3 (for details see Supplementary Mate-
rial, Appendix B). This resistance results in a low Qp/
Qs. To illustrate the performance at a higher Qp/Qs and
thus lower pulmonary vascular resistance, we per-
formed simulations with a resistance value of
3 MPa s m�3 for both RPA and LPA outlet boundary
conditions. Results for these cases are presented in
Table 4.

Figure 5 illustrates the WSS levels for the direct,
oblique and RPA shunts at neck and head arteries.
Likewise, Fig. 6 provides the WSS changes specifically
at the CoW region. The WSS is about 20% higher for
the RPA shunt configuration compared to the direct
shunt configuration, especially at the aortic arch re-
gion. The shunt anastomosis feature higher WSS dis-
tribution compared to its periphery. Maximum WSS
values are 118, 107 and 48 Pa for direct, oblique and
RPA shunt configurations, respectively. Direct shunt
configuration produces the highest WSS at the shunt
region, although it does not have the highest shunt
flow rate. Geometry of the shunt and its anastomosis
are the determinants of WSS distribution in addition to
the flow magnitude, as demonstrated earlier.12

Finally, the flow rate through the internal arteries of
CoW region is computed and compared for all three
shunt configurations. The internal arteries that are
particularly important for intra-operative diagnosis

TABLE 3. Flow rates and the corresponding Reynolds number (in parenthesis) for pre-surgery and the three different shunt
configurations (direct, oblique and RPA) investigated for fully-closed ductus arteriosus (DA) state.

Vessel name

Flow rate (LPM)

% Difference wrt direct

shunt

Pre-Surgery Direct Oblique RPA Oblique RPA

Great arterial vessels

Shunt 0.588 (141) 0.599 (143) 0.643 (148) 2 9

Dao �0.292 �0.549 (474) �0.556 (480) �0.574 (495) 1 5

RPA �0.416 �0.054 (184) �0.054 (186) �0.056 (193) �4 �23

LPA �0.416 �0.055 (135) �0.056 (137) �0.057 (140) �5 �23

SA �0.206 �0.122 (166) �0.116 (158) �0.095 (128) 1 4

Qp/Qs 0.194 0.183 0.144 �5 �26

Cerebral vessels

RAC A 0.028 �0.054 (127) �0.054 (128) �0.056 (132) �9 5

LACA �0.028 0.832 (1089) 0.832 (1089) 0.832 (1089) 1 5

RMCA �0.029 �0.052 (242) �0.048 (222) �0.055 (255) 2 5

LMCA �0.029 �0.054 (129) �0.055 (131) �0.057 (136) 2 4

RPCA �0.029 �0.122 (163) �0.116 (156) �0.094 (126) 1 5

LPCA �0.029 �0.054 (145) �0.054 (146) �0.056 (153) 1 5

Qc/QCO 0.215 0.214 0.225 0 5

Last two columns summarize the differences in flow rates for shunt configurations with respect to the direct (central) shunt. Only the vessels

with significant differences between the surgical configurations are included. Negative flow rate values represent outlet flows. Qp/Qs: Ratio of

pulmonary flow to systemic flow. Qc/QCO: Ratio of total cerebral flow to cardiac output.
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include RPCoA, LPCoA, and the connecting arteries
of RMCA-RPCA and LMCA-LPCA. These internal
arteries are important as they regulate the blood flow
to the cerebral artery through the afferent arteries.
Figure 6 presents the relative flow differences in
internal CoW arteries for oblique and RPA shunt
configurations compared to direct shunt configuration.
The shunt configurations affect flow distribution in the
head and neck arteries and can challenge a balanced
regional brain perfusion that can be taken into account
in pre-surgical planning. The differences in flow splits

start at the connecting cerebral arterial level influenc-
ing the downstream cerebral vascular perfusion.

Effect of Ductus Arteriosus Constriction on Shunt
Hemodynamics

Although the results of the present study represent
neonatal patients without a DA, some patients have a
functioning DA (naturally or deliberately through a
stent). The fully open DA model corresponds to the
hybrid reduced (less) invasive interventional therapy

MPA

DIRECT
SHUNT

OBLIQUE
SHUNT

RPA
SHUNT

RPA
LPA

MPA

RPA
MPA

BA
LCA

SA

3 m/s

0 m/s

RPA

LPA

FIGURE 4. Comparison of shunt configurations for the full model of tetralogy of Fallot (TOF) on aortic arch and pulmonary
arteries. Figures on the left and at the middle show flow path lines colored with the velocity magnitude, while figures on the right
show velocity vectors. The entire aortic region is displayed on the left, while the middle and right columns focused on shunt
regions. Results are presented for the central direct, central oblique and RPA shunts from top to bottom, respectively. (MPA: Main
pulmonary artery, RPA: Right pulmonary artery, LPA: Left pulmonary artery, BA: Brachiocephalic artery, LCA: Left carotid artery,
SA: Subclavian artery.). Results are presented for high pulmonary vascular resistance (i.e., Qp/Qs is between 0.144 and 0.192).
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achieved through a stented DA with banded PAs. This
configuration also represents the early post-operative
state observed in a limited number of 1st stage
patients. Therefore, in this section hemodynamics of
shunt configurations with closed DA (‘‘Comparison of
Shunt Configurations’’ section) are compared with the

open DA state. Simulations are completed for all three
shunt configurations, but for brevity only the direct
shunt configuration results are presented here, as the
conclusions were similar. It is observed that the flow
through the pulmonary arteries changes 42% when a
persistent DA exists. The cerebral flow changes only

TABLE 4. Flow rates and the corresponding Reynolds number (in parenthesis) for the three different shunt configurations (direct,
oblique and RPA) investigated for fully-closed ductus arteriosus (DA) state with low pulmonary resistance value.

Vessel name

Flow rate (LPM)

% Difference wrt direct

shunt

Direct Oblique RPA Oblique RPA

Great arterial vessels

Shunt �0.392 (101) �0.379 (97) �0.569 (146) �3 45

Dao �0.241 (208) �0.255 (221) �0.193 (166) 6 �20

RPA �0.258 (341) �0.262 (347) �0.299 (395) 2 16

LPA �0.352 (470) �0.335 (447) �0.488 (651) �5 39

SA �0.169 (298) �0.178 (313) �0.135 (238) 5 �20

Qp/Qs 0.683 0.659 1.098 �4 61

Cerebral vessels

RACA �0.070 (329) �0.051 (237) �0.055 (258) �28 �22

LACA �0.079 (272) �0.078 (269) �0.062 (216) �1 �21

RMCA �0.084 (200) �0.087 (209) �0.068 (163) 5 �19

LMCA �0.086 (213) �0.091 (224) �0.070 (173) 5 �19

RPCA �0.082 (223) �0.082 (224) �0.066 (181) 1 �19

LPCA �0.082 (194) �0.084 (198) �0.066 (157) 2 �19

Qc/QCO �0.321 �0.315 �0.258 �2 �20

Last two columns summarize the differences in flow rates for shunt configurations with respect to the direct (central) shunt. Only the vessels

with significant differences between the surgical configurations are included. Negative flow rate values represent outlet flows. Qp/Qs: Ratio of

pulmonary flow to systemic flow. Qc/QCO: Ratio of total cerebral flow to cardiac output.

  OBLIQUE SHUNT       RPA SHUNTDIRECT SHUNT

RMCA
RACA LACA

RPCA
LPCA

SA

RCA LCA

RVA

LVA

BA

WSS (N/m2)

0 3.5LMCA 6.5
(a) (b) 
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FIGURE 5. Hemodynamic comparison at the neck segment for the three shunt configurations studied in the present manuscript;
direct, oblique and RPA shunt configurations. Colored figures display the WSS distributions. (SA: Subclavian artery, RVA: Right
vertebral artery, LVA: Left vertebral artery, RCA: Right carotid artery, LCA: Left carotid artery, BA: Basilar artery, RACA: Right
anterior cerebral artery, LACA: Left anterior cerebral artery, RMCA: Right middle cerebral artery, LMCA: Left middle cerebral artery,
RPCA: Right posterior cerebral artery, LPCA: Left posterior cerebral artery.) Results are presented for high pulmonary vascular
resistance (i.e., Qp/Qs is between 0.144 and 0.192).
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5%, while the shunt flow increases sixfold with the
DA.

Flow distributions at all artery outlets and the Qp/
Qs stays almost constant for all three shunt configu-
rations while DA is active. This is due to the high
peripheral resistance values of the neonatal patient,
which determines the flow rates, consistent with our
previous study.8 Interestingly, the flow passing through
shunt and PDA depends on the shunt configuration.
The trans-shunt flowrate is 21% higher for central
oblique shunt compared to central direct shunt when
DA is patent. Likewise, the flow rate at the RPA shunt

is 53% higher than that of central direct shunt,
resulting in improved shunt performance for TOF
(fully-open MPA model). Flow rate at the PDA de-
creases 3 and 8% (0.02 LPM and 0.03 LPM) when
compared to central direct shunt configuration for
central oblique and RPA shunt configurations,
respectively. Those decreases in flow rates balance the
shunt flows so that the flow convected to the pul-
monary arteries stay relatively constant.

Finally, the flow rates at the major interior cerebral
branches depend on the shunt configuration. For
example, the artery connecting the LMCA and ante-
rior arteries has 3% higher flow rate for RPA shunt
configuration compared to central direct shunt con-
figuration for the TOF disease model.

DISCUSSION

During the last decade, neonatal surgical repair of
TOF resulted in minimal mortality, and the present
focus shifted towards achieving the best late-functional
outcome.11 It is hypothesized that the optimal shunt
hemodynamics is critical for improved quality of life.
As our morphometric study demonstrated, shunt
placement will balance the post-operative Qp/Qs and
minimize pulmonary hypertension1,21,49,51,52 in a shunt
configuration dependent manner. Local shunt flow
performance, particularly WSS, is known to influence
the shunt patency, and can vary as much as 33%
between the different shunt configurations. Higher
WSS distributions will decrease the graft life due to
high friction at the material surface. Likewise, ana-
lyzing the WSS distribution at the head-neck, neck and
cerebral arteries for direct and RPA shunts indicates
higher WSS at distal LCA and vertebral artery anas-
tomosis for RPA shunt compared to the direct-shunt
configuration (Fig. 5).

We have simulated two different pulmonary vascu-
lar resistance states: with high and low values (Tables 3
and 4). For the high pulmonary vascular resistance
state: Shunt configuration can also cause substantial
changes in the total PA flow leading to 26% changes in
Qp/Qs for the same shunt diameter. However, once the
peripheral pulmonary vascular resistances at RPA and
LPA are fixed there is no significant preferential flow
direction between RPA and LPA, for all shunt con-
figurations studied in this work. The DA patency
(naturally or after the stenting operation) and disease
severity does not alter these flow regimes. Therefore,
realistic measurements of pulmonary vascular resis-
tances are critical in predicting the pulmonary flow
preference. In our model, we intentionally kept RPA
and LPA geometries at the same diameter in symmetric
shape, which resulted in the same great artery resis-

DIRECT

RACA LACA

RPCA LPCA

RMCA
LMCA

7% 2%

0%7%

RPCoA LPCoA

13% 17%

17%
22%

WSS (N/m2)

0 

3.5

6.5

OBLIQUE

RPA SHUNT

FIGURE 6. Post-operative flow differences and wall shear
stress (WSS) distribution at the circle of Willis (CoW) due to
different surgical shunt types; short, oblique and RPA. The
percentage values labeled on each cerebral artery correspond
to the flow rate differences due to shunt type relative to the
direct shunt configuration (TOP figure). (RACA: Right anterior
cerebral artery, LACA: Left anterior cerebral artery, RMCA:
Right middle cerebral artery, LMCA: Left middle cerebral ar-
tery, RPCA: Right posterior cerebral artery, LPCA: Left pos-
terior cerebral artery, RPCoA: Right posterior communicating
artery, LPCoA: Left posterior communicating artery.). Results
are presented for high pulmonary vascular resistance (i.e., Qp/
Qs is between 0.144 and 0.192).
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tance at uniform flow conditions. Any change in
geometry, peripheral or branch resistance (e.g., due to
complex flow patterns in one branch, see Figs. 3 and 4)
could cause a difference in LPA/RPA ratio. Also,
larger shunt or pulmonary artery diameter could in-
crease the Qp/Qs. For the high pulmonary vascular
resistance state: Qp/Qs can change up to 61% for the
same shunt diameter while RPA and LPA flow rates
also differ significantly within the same shunt config-
uration (up to 63%). Thus, the pulmonary vascular
resistance, besides shunt configuration, has a substan-
tial effect on the arterial flow splits.

Considering the complex recirculation regions
(vorticity), the direct shunt is the most laminar flow
among the shunt configurations studied. Vorticity is
important in terms of energy loss and blood damage
and should be avoided.15,35,56 Since the shunt position
affects the formation of vortices, it is also expected to
affect flow split at the artery outlets and WSS at the
root of the head neck arteries. Therefore, existence of
vorticity should also be taken into consideration in
terms of surgery performance.

Present results illustrate an important function of DA
as a balancing vessel as there are substantial differences
between cases with and without DA. For an active and
functioning DA, the influence of shunt configuration on
hemodynamic balance is found to be minimal. For an
open DA, the shunt diameter and configuration cannot
control the Qp/Qs and achieve hemodynamic stability.
Regardless of the shunt type, all arterial flow splits will
remain the same. Shunt size does not allow enough blood
flow to maintain the same flow distribution. In contrast,
when the DA is closed the head-neck flow distributions
and Qp/Qs become highly dependent on shunt configu-
rations in addition to the resistances of peripheral arterial
beds. While the Open-DA configuration can be em-
ployed in hybrid repair, the closed DA case is more
common in pediatric patients and achieves better circu-
latory control since it is ligated by the surgeon or tends to
vanish naturally after birth.

In an earlier study, through an idealized parametric
computational model of hypoplastic left heart syn-
drome, Migliavacca et al.29 calculated pressure drops
for straight and blunt shunt configurations that
resemble the direct and oblique shunts of the present
study, to be ~30 and ~26 mmHg respectively. Even
though the type of disease is considerably different, the
pressure drop values are in agreement with the present
computations. As such, the pressure drops for all flow
rates are higher for straight shunts compared to the
blunt shunts. In terms of higher pulmonary perfusion
and lower pressure drops, the surgeon may prefer the
direct shunt during surgery.

Neurodevelopmental delays in CHD patients are
common and highly variable.17,34 Present results

demonstrate that the placement of the surgical shunt
alters the head-neck flow split and the acute hemody-
namic balance of the cerebral circulation system. The
differences in flow rates in cerebral arteries indicate
different perfusion rates at the vital brain sections.
Whether this finding might have major physiological
consequences or be associated with the poor post-op-
erative neurodevelopment outcome of 1st stage surg-
eries should prompt further investigations. Still, it
would be wise to consider cerebellum blood perfusion
as a new performance parameter that can easily be
calculated in 1st stage computational pre-surgical
planning. This enables an estimate of the flow changes
in the brain after shunt surgery. Particularly the role of
CoW to redistribute the cerebral flow after the acute
shunt placement is an important clinical factor and has
not been emphasized in the literature to our knowl-
edge. Knowledge of the detailed post-operative 3D
cerebral perfusion map could lead to optimal neu-
rodevelopment.

Patient-specific computational fluid dynamics
evolved to be a standard tool for simulating the
hemodynamic performance of pediatric cardiovascular
shunts, reducing the need for in vitro tests as well as
complex animal experiments.42 While most steps of the
patient-specific analysis methodology including the
MRI scanning, segmentation, volume generation,
mesh discretization and visualization has matured,42 as
our study indicates, the predictive capability of realistic
boundary conditions representing the peripheral cir-
culation needs further emphasis. Particularly the
inclusion of major cerebral vessels undertaken in the
present work is a step towards this objective. We
showed that the standard resistance boundary condi-
tions attached to the truncated head-neck vessels out-
lets representing the cerebral circulation is not
adequate for predicting flow-splits as well as the local
flow properties such as streamlines, WSS and pressure
distribution (See Supplementary Material Appendix B
for details). According to our results, the standard
CFD model without the head-neck and cerebral
arteries overestimates the flow passing through the
shunt and underestimates the DA flow. Likewise,
inclusion of the full cerebral system substantially
changes the flow distribution and shifts the flow bal-
ance at the head-neck arteries. This finding is more
critical for the smaller size neonatal aortic arch system
compared to a mature aortic arch, since for the later
the peripheral vascular resistance values are signifi-
cantly lower. As our results demonstrate, the hemo-
dynamic shunt analysis cannot be localized to the
shunt region alone. The entire cardiovascular circula-
tion system, including the natural shunt of DA, if it
exists, must be considered for precise surgical decision-
making.42 Finally, the addition of 3D cerebral arteries
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to the CFD domain will not eliminate the utility of
lumped parameter model boundary conditions as they
will still be needed for the rest of the vasculature.

LIMITATIONS

The present study is a pilot investigation that fo-
cused on diseased type and shunt configurations, which
will be expanded through larger shunt sizes, surgeon-
specific shunt configurations and parametric pul-
monary arterial diameters,45 including patient-specific
anatomical cases as they become available.44 Compu-
tational results correspond to the time-averaged
hemodynamics and exclude the deformation of the
artery as well as the non-Newtonian effects. The latter
parameter is potentially important, but its effect is
shadowed due to the high variability of pediatric blood
and so would not influence our comparative results. As
in most arterial hemodynamic applications, for aortic
flows the use of compliant models (for the deformation
of the artery compared to aortic root rotation) alone
does not bring much improvement on the accuracy of
results over simpler and computationally more efficient
rigid models.20,25,31,36,41 We utilized a patient-specific
cerebral arterial anatomy but developed a realistic arch
reconstruction through the diligent input from several
experienced clinicians on this integrated model (model
development is summarized in Supplementary Mate-
rial, Appendices A and B). Idealized aortic arch and
neck arteries can cause some deviations from the pa-
tient-specific results, but this effect is limited since, in
the present study, the shunt configurations are com-
pared to each other using the same baseline geometry.

Our results clearly illustrate that the predictive
surgical planning simulations require the use of an
accurate downstream patient-specific cerebral geome-
try. Complexity of the cerebral arterial system is a
major challenge for the present study and needs to be
revised and improved in future models. For example,
an incomplete CoW is common for neonates and
congenital heart patients, which should influence the
reported flow splits. Still, the comparative values of
present results should be valid to a certain degree. The
physiologically realistic geometry and boundary con-
ditions are critical for replicating the physiological re-
sults, even if it is challenging to obtain accurate
measurements and data needed for modeling purposes
in infants and small babies.22,42,43 Likewise, the effects
of disease-specific shunt configurations and anasto-
mosis location on cerebral and coronary flow are all
important considerations for the surgical decision-
making process.

Our downstream boundary conditions are not fully
multi-scale, still the present boundary conditions are

indeed the ‘‘lumped’’ versions of more detailed multi-
scale boundary conditions, thus both simulate the
same physical behavior. Our manuscript demonstrated
an important weakness of these schemes, applicable
both for lumped or multiscale; the 3D cerebral system
geometry in simulations is critical for accurate esti-
mation of changes in especially WSS and 3D flow
characteristics: secondary flow and vorticity as high-
lighted in the original Appendix material (Page 2,
Section B).

CONCLUSIONS

The present manuscript explored alternative shunt
configurations that have potential for improved
peripheral blood flow split and local hemodynamics.
Quantitative information on cerebral hemodynamics
and perfusion are provided, which are critical for CHD
patients. Our study showed that the RPA shunt has
slightly better cerebral perfusion for TOF. Further-
more, a persistent ductal communication between the
systemic and pulmonary arteries suppresses the influ-
ence of surgical shunt and results in poor flow split
control. When the ductus arteriosus is fully ligated, all
three clinically shunt configurations result in signifi-
cant differences in flow distributions and local hemo-
dynamics. Most importantly, major differences
observed in cerebral blood flows prompted the
requirement for detailed future studies on neonatal
cerebral perfusion of CHDs. The shunt configuration
has a very limited, almost no, effect on flow splits while
the DA is open and is critical for flow control when the
DA is closed. In addition to the shunt configuration,
our computations indicated that neonatal arterial
hemodynamics is also influenced by the pulmonary
vascular resistance severity and should be taken into
consideration during the 1st stage shunt planning (for
example, for high pulmonary resistance case, direct
shunt has 26% higher pulmonary perfusion with re-
spect to RPA shunt while for low pulmonary resistance
case RPA shunt has 61% higher pulmonary perfusion
with respect to direct shunt). Surgeons can prefer direct
shunt in terms of higher pulmonary perfusion (23%
with respect to RPA shunt perfusion) and lower pres-
sure drop, even though it has 5% lower cerebral per-
fusion in the case of TOF in case of low pulmonary
vascular resistance. Current practice in hemodynamic
modeling, including the lumped parameter system
models, is to consider aortic arch manifold vessel as
central, and to treat the neck and cerebral arteries as a
lumped network or as a truncated constant pressure
boundary condition. As the present study illustrates, if
such truncated boundary conditions are utilized, the
results might be misleading.
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