149 research outputs found

    A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development

    Get PDF
    Disorders of sex development (DSD) are congenital conditions where chromosomal, gonad or genital development is atypical. In a significant proportion of 46,XY DSD cases it is not possible to identify a causative mutation, making genetic counseling difficult and potentially hindering optimal treatment. Here, we describe the analysis of a 46,XY DSD patient that presented at birth with ambiguous genitalia. Histological analysis of the surgically removed gonads showed bilateral undifferentiated gonadal tissue and immature testis, both containing malignant germ cells. We screened genomic DNA from this patient for deletions and duplications using an Illumina whole-genome SNP microarray. This analysis revealed a heterozygous deletion within the WWOX gene on chromosome 16, removing exons 6-8. Analysis of parental DNA showed that the deletion was inherited from the mother. cDNA analysis confirmed that the deletion maintained the reading frame, with exon 5 being spliced directly onto exon 9. This deletion is the first description of a germline rearrangement affecting the coding sequence of WWOX in humans. Previously described Wwox knockout mouse models showed gonadal abnormalities, supporting a role for WWOX in human gonad development

    Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene

    Get PDF
    WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues

    WWOX expression in colorectal cancer—a real-time quantitative RT-PCR study

    Get PDF
    The WWOX gene is a tumour suppressor gene affected in various types of malignancies. Numerous studies showed either loss or reduction of the WWOX expression in variety of tumours, including breast, ovary, liver, stomach and pancreas. Recent study demonstrated that breast cancer patients exhibiting higher WWOX expression showed significantly longer disease-free survival in contrast to the group with lower relative WWOX level. This work was undertaken to show whether similar phenomena take place in colon tumours and cell lines. To assess the correlation of WWOX gene expression with prognosis and cancer recurrence in 99 colorectal cancer patients, we performed qRT-PCR analysis. We also performed analysis of WWOX promoter methylation status using MethylScreen method and analysis of loss of heterozygosity (LOH) status at two WWOX-related loci, previously shown to be frequently deleted in various types of tumours. A significantly better disease-free survival was observed among patients with tumours exhibiting high level of WWOX (hazard ratio = 0.39; p = 0.0452; Mantel–Cox log-rank test), but in multivariate analysis it was not an independent prognostic factor. We also found that although in colorectal cancer WWOX expression varies among patients and correlates with DFS, the exact mode of decrease in this type of tumour was not found. We failed to find the evidence of LOH in WWOX region, or hypermethylation in promoter regions of this gene. Although we provide the evidence for tumour-suppressive role of WWOX gene expression in colon, we were unable to identify the molecular mechanism responsible for this

    Conditional Wwox Deletion in Mouse Mammary Gland by Means of Two Cre Recombinase Approaches

    Get PDF
    Loss of WWOX expression has been reported in many different cancers including breast cancer. Elucidating the function of this gene in adult tissues has not been possible with full Wwox knockout models. Here we characterize the first conditional models of Wwox ablation in mouse mammary epithelium utilizing two transgenic lines expressing Cre recombinase, keratin 5-Cre (BK5-Cre) and MMTV-Cre. In the BK5-Cre model we observed very efficient Wwox ablation in KO mammary glands. However, BK5-Cre Wwox KO animals die prematurely for unknown reasons. In the MMTV-Cre model we observed significant ablation of Wwox in mammary epithelium with no effect on survival. In both of these models we found that Wwox deletion resulted in impaired mammary branching morphogenesis. We demonstrate that loss of Wwox is not carcinogenic in our KO models. Furthermore, no evidence of increase proliferation or development of premalignant lesions was observed. In none of the models did loss of a single Wwox allele (i.e. haploinsufficiency) have any observable phenotypic effect in mammary gland. To better understand the function of Wwox in the mammary gland, transcriptome profiling was performed. We observed that Wwox ablation results in the deregulation of genes involved in various cellular processes. We found that expression of the non-canonical Wnt ligand, Wnt5a, was significantly upregulated in Wwox KO mammary epithelium. Interestingly, we also determined that components of the Jak/Stat3 signaling pathway were upregulated in KO mice and this correlated with a very robust increase in phospho-Stat3 signaling, which warrants further testing. Even though the loss of Wwox expression in breast and other cancers is very well documented, our findings suggest that Wwox does not act as a classical tumor suppressor as previously thought

    Molecular analysis of WWOX expression correlation with proliferation and apoptosis in glioblastoma multiforme

    Get PDF
    Glioblastoma multiforme is the most common type of primary brain tumor in adults. WWOX is a tumor suppressor gene involved in carcinogenesis and cancer progression in many different neoplasms. Reduced WWOX expression is associated with more aggressive phenotype and poor patient outcome in several cancers. We investigated alternations of WWOX expression and its correlation with proliferation, apoptosis and signal trafficking in 67 glioblastoma multiforme specimens. Moreover, we examined the level of WWOX LOH and methylation status in WWOX promoter region. Our results suggest that loss of heterozygosity (relatively frequent in glioblastoma multiforme) along with promoter methylation may decrease the expression of this tumor suppressor gene. Our experiment revealed positive correlations between WWOX and Bcl2 and between WWOX and Ki67. We also confirmed that WWOX is positively correlated with ErbB4 signaling pathway in glioblastoma multiforme

    Hypermethylation-mediated reduction of WWOX expression in intraductal papillary mucinous neoplasms of the pancreas

    Get PDF
    We have previously shown that WW domain-containing oxidoreductase (WWOX) has tumour-suppressing effects and that its expression is frequently reduced in pancreatic carcinoma. In this study, we examined WWOX expression in intraductal papillary mucinous neoplasm of the pancreas (IPMN) to assess the function of WWOX in pancreatic duct tumourigenesis using immunohistochemistry and methylation-specific polymerase chain reaction analysis. Among 41 IPMNs including intraductal papillary mucinous adenomas (IPMAs) and intraductal papillary mucinous carcinomas (IPMCs), loss or reduced WWOX immunoreactivity was detected in 3 (15%) of 20 IPMAs and 17 (81%) of 21 IPMCs. In addition, hypermethylation of the WWOX regulatory site was detected in 1 (33%) of 3 WWOX(−) IPMAs and 9 (53%) of 17 WWOX(−) IPMCs, suggesting that hypermethylation may possibly be important in the suppression of WWOX expression. Reduction of WWOX expression was significantly correlated with a higher Ki-67 labelling index but was not correlated with the ssDNA apoptotic body index. Interestingly, decreased WWOX expression was significantly correlated with loss of SMAD4 expression in these IPMNs. The results indicate that downregulation of WWOX expression by the WWOX regulatory region hypermethylation is critical for transformation of pancreatic duct

    Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis

    Get PDF
    p63 is a p53-related transcription factor. Utilization of two different promoters and alternative splicing at the C terminus lead to generation of six isoforms. The α isoforms of TAp63 and ΔNp63 contain a transactivation-inhibitory (TI) domain at the C termini, which can bind to the transactivation (TA) domain and inhibit its transcriptional activity. Consequently, TAp63α can directly inhibit its activity through an intramolecular interaction; similarly, ΔNp63α can inhibit the activity of the active TAp63 isoforms through an intermolecular interaction. In this work, we demonstrate that after induction of apoptosis, the TI domain of the p63α isoforms is cleaved by activated caspases. Cleavage of ΔNp63α relieves its inhibitory effect on the transcriptionally active p63 proteins, and the cleavage of TAp63α results in production of a TAp63 protein with enhanced transcriptional activity. In agreement with these data, generation of the N-terminal TAp63 fragment has a role in apoptosis because stable cell lines expressing wild-type TAp63 are more sensitive to apoptosis compared with cells expressing the noncleavable mutant. We also used a model system in which TAp63 expression was induced by trichostatin-A treatment in HCT116 cells. Trichostatin-A sensitized these cells to apoptosis, and this sensitization was associated with cleavage of up-regulated p63

    WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response

    Get PDF
    There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer
    corecore