211 research outputs found

    Dictyostelium discoideum as a Model to Study Inositol Polyphosphates and Inorganic Polyphosphate

    Get PDF
    The yeast Saccharomyces cerevisiae has given us much information on the metabolism and function of inositol polyphosphates and inorganic polyphosphate. To expand our knowledge of the metabolic as well as functional connections between inositol polyphosphates and inorganic polyphosphate, we have refined and developed techniques to extract and analyze these molecules in a second eukaryotic experimental model, the amoeba Dictyostelium discoideum. This amoeba, possessing a well-defined developmental program, is ideal to study physiological changes in the levels of inositol polyphosphates and inorganic polyphosphate, since levels of both molecules increase at late stages of development. We detail here the methods used to extract inositol polyphosphates using perchloric acid and inorganic polyphosphate using acidic phenol. We also present the postextraction procedures to visualize and quantify these molecules by polyacrylamide gel electrophoresis and by malachite green assay

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants

    Get PDF
    BACKGROUND: Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. METHODS: A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. RESULTS: CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0–1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. CONCLUSION: State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Which Green Matters for Whom? Greening and Firm Performance across Age and Size Distribution of Firms.

    Get PDF
    A growing body of literature links firm performance with sustainability efforts.We contribute to this literature by developing a novel framework for contextualising greening through the lens of tangibility and visibility of greening activities and examine the impact of different types of greening on firm performance along the age and size distribution of firms. The empirical results based on a large-scale database suggest that rewards to different types of greening differ across age and size distributions

    Are the affluent prepared to pay for the planet? Explaining willingness to pay for public and quasi-private environmental goods in Switzerland

    Get PDF
    A large number of ‘environmental justice’ studies show that wealthier people are less affected by environmental burdens and also consume more resources than poorer people. Given this double inequity, we ask, to what extent are affluent people prepared to pay to protect the environment? The analyses are couched within the compensation/affluence hypothesis, which states that wealthier persons are able to spend more for environmental protection than their poorer counterparts. Further, we take into account various competing economic, psychological and sociological determinants of individuals’ willingness to pay (WTP) for both public environmental goods (e.g., general environmental protection) and quasi-private environmental goods (e.g., CO2-neutral cars). Such a comprehensive approach contrasts with most other studies in this field that focus on a limited number of determinants and goods. Multivariate analyses are based on a general population survey in Switzerland (N = 3,369). Although income has a positive and significant effect on WTP supporting the compensation hypothesis, determinants such as generalized interpersonal trust that is assumed to be positively associated with civic engagement and environmental concern prove to be equally important. Moreover, we demonstrate for the first time that time preferences can considerably influence survey-based WTP for environmental goods; since investments in the environment typically pay off in the distant future, persons with a high subjective discount rate are less likely to commit

    Population Structure as Revealed by mtDNA and Microsatellites in Northern Fur Seals, Callorhinus ursinus, throughout Their Range

    Get PDF
    Background: The northern fur seal (Callorhinus ursinus; NFS) is a widely distributed pinniped that has been shown to exhibit a high degree of philopatry to islands, breeding areas on an island, and even to specific segments of breeding areas. This level of philopatry could conceivably lead to highly genetically divergent populations. However, northern fur seals have the potential for dispersal across large distances and have experienced repeated rapid population expansions following glacial retreat and the more recent cessation of intensive harvest pressure. Methodology/Principal Findings: Using microsatellite and mitochondrial loci, we examined population structure in NFS throughout their range. We found only weak population genetic structure among breeding islands including significant FST and W ST values between eastern and western Pacific islands. Conclusions: We conclude that insufficient time since rapid population expansion events (both post glacial and following the cessation of intense harvest pressure) mixed with low levels of contemporary migration have resulted in an absence of genetic structure across the entire northern fur seal range
    corecore