233 research outputs found

    Activity in the human superior colliculus relating to endogenous saccade preparation and execution

    Get PDF
    In recent years a small number of studies have applied functional imaging techniques to investigate visual responses in the human superior colliculus (SC), but few have investigated its oculomotor functions. Here, in two experiments, we examined activity associated with endogenous saccade preparation. We used 3-T fMRI to record the hemodynamic activity in the SC while participants were either preparing or executing saccadic eye movements. Our results showed that not only executing a saccade (as previously shown) but also preparing a saccade produced an increase in the SC hemodynamic activity. The saccade-related activity was observed in the contralateral and to a lesser extent the ipsilateral SC. A second experiment further examined the contralateral mapping of saccade-related activity with a larger range of saccade amplitudes. Increased activity was again observed in both the contralateral and ipsilateral SC that was evident for large as well as small saccades. This suggests that the ipsilateral component of the increase in BOLD is not due simply to small-amplitude saccades producing bilateral activity in the foveal fixation zone. These studies provide the first evidence of presaccadic preparatory activity in the human SC and reveal that fMRI can detect activity consistent with that of buildup neurons found in the deeper layers of the SC in studies of nonhuman primates

    Winner-take-all selection in a neural system with delayed feedback

    Full text link
    We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.Comment: 8 pages, 6 figure

    An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    Get PDF
    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades

    The reference frame for encoding and retention of motion depends on stimulus set size

    Get PDF
    YesThe goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information

    Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p

    Cortical Contributions to Saccadic Suppression

    Get PDF
    The stability of visual perception is partly maintained by saccadic suppression: the selective reduction of visual sensitivity that accompanies rapid eye movements. The neural mechanisms responsible for this reduced perisaccadic visibility remain unknown, but the Lateral Geniculate Nucleus (LGN) has been proposed as a likely site. Our data show, however, that the saccadic suppression of a target flashed in the right visual hemifield increased with an increase in background luminance in the left visual hemifield. Because each LGN only receives retinal input from a single hemifield, this hemifield interaction cannot be explained solely on the basis of neural mechanisms operating in the LGN. Instead, this suggests that saccadic suppression must involve processing in higher level cortical areas that have access to a considerable part of the ipsilateral hemifield

    Viewing Rate-Based Neurons as Biophysical Conductance Outputting Models

    Get PDF
    In the field of computational neuroscience, spiking neural network models are generally preferred over rate-based models due to their ability to model biological dynamics. Within AI, rate-based artificial neural networks have seen success in a wide variety of applications. In simplistic spiking models, information between neurons is transferred through discrete spikes, while rate-based neurons transfer information through continuous firing-rates. Here, we argue that while the spiking neuron model, when viewed in isolation, may be more biophysically accurate than rate-based models, the roles reverse when we also consider information transfer between neurons. In particular we consider the biological importance of continuous synaptic signals. We show how synaptic conductance relates to the common rate-based model, and how this relation elevates these models in terms of their biological soundness. We shall see how this is a logical relation by investigating mechanisms known to be present in biological synapses. We coin the term ‘conductance-outputting neurons’ to differentiate this alternative view from the standard firing-rate perspective. Finally, we discuss how this fresh view of rate-based models can open for further neuro-AI collaboration.acceptedVersionThis is a post-peer-review, pre-copyedit version of an article. Locked until 26.04.2020 due to copyright restrictions. The final authenticated version is available online at: 10.1007/978-3-030-19311-9_1

    Evidence for the predictive remapping of visual attention

    Get PDF
    When attending an object in visual space, perception of the object remains stable despite frequent eye movements. It is assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Remapping is predictive when it starts before the actual eye movement. Until now, most evidence for predictive remapping has been obtained in single cell studies involving monkeys. Here, we report that predictive remapping affects visual attention prior to an eye movement. Immediately following a saccade, we show that attention has partly shifted with the saccade (Experiment 1). Importantly, we show that remapping is predictive and affects the locus of attention prior to saccade execution (Experiments 2 and 3): before the saccade was executed, there was attentional facilitation at the location which, after the saccade, would retinotopically match the attended location
    corecore