28 research outputs found

    Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2) in human cancers with focus on breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that <it>NDRG2 </it>mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of <it>NDRG2 </it>is currently unknown, high <it>NDRG2 </it>expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, <it>in vitro </it>studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of <it>NDRG2 </it>mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue.</p> <p>Methods</p> <p>By labelling a human Cancer Profiling Array with a radioactive probe against <it>NDRG2</it>, we evaluated the level of <it>NDRG2 </it>mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of <it>NDRG2 </it>and <it>MYC </it>mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples.</p> <p>Results</p> <p>From the Cancer Profiling Array, we saw that the level of <it>NDRG2 </it>mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in <it>NDRG2 </it>mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of <it>NDRG2 </it>mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02) and breast cancer (p = 0.004), compared with normal tissue. <it>MYC </it>mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between <it>MYC </it>and <it>NDRG2 </it>mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and tumor tissues, suggesting that <it>MYC </it>and <it>NDRG2 </it>mRNA are regulated together.</p> <p>Conclusion</p> <p>Expression of <it>NDRG2 </it>mRNA is reduced in many different human cancers. Using quantitative RT-PCR, we have verified a reduction in thyroid cancer and shown, for the first time, that <it>NDRG2 </it>mRNA is statistically significantly down-regulated in breast cancer. Furthermore, our observations indicate that other tissues such as cervix and testis can have lower levels of <it>NDRG2 </it>mRNA in tumor tissue compared to normal tissue.</p

    Genetic adult lactase persistence is associated with risk of Crohn's Disease in a New Zealand population

    Get PDF
    Background: Mycobacterium avium subspecies paratuberculosis (MAP) is an infective agent found in ruminants and milk products, which has been suggested to increase the risk of gastrointestinal inflammation in genetically susceptible hosts. It is hypothesized that lactase persistence facilitates exposure to such milk products increasing the likelihood of adverse outcomes. Individuals either homozygous or heterozygous for the T allele of DNA variant, rs4988235, located 14kb upstream from the LCT locus, are associated with having lactase persistence. The aim of this study was to determine whether lactase persistence as evident by the T allele of rs4988235 is associated with Crohn's Disease (CD) in a New Zealand population. Findings: Individuals homozygous for the T allele (T/T genotype) showed a significantly increased risk of having CD as compared with those homozygous for the C allele (OR = 1.61, 95% CI = 1.03-2.51). Additionally, a significant increase in the frequency of the T allele was observed in CD patients (OR = 1.30, 95% CI = 1.05-1.61, p = 0.013), indicating that the T allele encoding lactase persistence was associated with an increased risk of CD. Conclusions: Our findings indicate that lactase persistence as evident by the presence of the T allele of rs4988235 is associated with risk of CD in this New Zealand Caucasian population

    Evidence for Hitchhiking of Deleterious Mutations within the Human Genome

    Get PDF
    Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles

    The Origins of Lactase Persistence in Europe

    Get PDF
    Lactase persistence (LP) is common among people of European ancestry, but with the exception of some African, Middle Eastern and southern Asian groups, is rare or absent elsewhere in the world. Lactase gene haplotype conservation around a polymorphism strongly associated with LP in Europeans (−13,910 C/T) indicates that the derived allele is recent in origin and has been subject to strong positive selection. Furthermore, ancient DNA work has shown that the −13,910*T (derived) allele was very rare or absent in early Neolithic central Europeans. It is unlikely that LP would provide a selective advantage without a supply of fresh milk, and this has lead to a gene-culture coevolutionary model where lactase persistence is only favoured in cultures practicing dairying, and dairying is more favoured in lactase persistent populations. We have developed a flexible demic computer simulation model to explore the spread of lactase persistence, dairying, other subsistence practices and unlinked genetic markers in Europe and western Asia's geographic space. Using data on −13,910*T allele frequency and farming arrival dates across Europe, and approximate Bayesian computation to estimate parameters of interest, we infer that the −13,910*T allele first underwent selection among dairying farmers around 7,500 years ago in a region between the central Balkans and central Europe, possibly in association with the dissemination of the Neolithic Linearbandkeramik culture over Central Europe. Furthermore, our results suggest that natural selection favouring a lactase persistence allele was not higher in northern latitudes through an increased requirement for dietary vitamin D. Our results provide a coherent and spatially explicit picture of the coevolution of lactase persistence and dairying in Europe

    Escape from epigenetic silencing of lactase expression is triggered by a single-nucleotide change

    Get PDF
    The importance of subtle gene regulation and epigenetics in determining complex human traits is increasingly being recognized. However, bridging the gaps between environmental, epigenetic and genetic influences and unraveling causal relationships remain a big challenge. A study now reports an example of epigenetic changes influenced by genetic factors that are involved in the regulation of lactase gene expression
    corecore