2,263 research outputs found
A mixture model for the joint analysis of latent developmental trajectories and survival
A general joint modeling framework is proposed that includes a parametric stratified survival component for continuous time survival data, and a mixture multilevel item response component to model latent developmental trajectories given mixed discrete response data. The joint model is illustrated in a real data setting, where the utility of longitudinally measured cognitive function as a predictor for survival is investigated in a group of elderly persons. The object is partly to determine whether cognitive impairment is accompanied by a higher mortality rate. Time-dependent cognitive function is measured using the generalized partial credit model given occasion-specific mini-mental state examination response data. A parametric survival model is applied for the survival information, and cognitive function as a continuous latent variable is included as a time-dependent explanatory variable along with other explanatory information. A mixture model is defined, which incorporates the latent developmental trajectory and the survival component. The mixture model captures the heterogeneity in the developmental trajectories that could not be fully explained by the multilevel item response model and other explanatory variables. A Bayesian modeling approach is pursued, where a Markov chain Monte Carlo algorithm is developed for simultaneous estimation of the joint model parameters. Practical issues as model building and assessment are addressed using the DIC and various posterior predictive tests
Why Um Helps Auditory Word Recognition: The Temporal Delay Hypothesis
Several studies suggest that speech understanding can sometimes benefit from the presence of filled pauses (uh, um, and the like), and that words following such filled pauses are recognised more quickly. Three experiments examined whether this is because filled pauses serve to delay the onset of upcoming words and these delays facilitate auditory word recognition, or whether the fillers themselves serve to signal upcoming delays in a way which informs listeners' reactions. Participants viewed pairs of images on a computer screen, and followed recorded instructions to press buttons corresponding to either an easy (unmanipulated, with a high-frequency name) or a difficult (visually blurred, low-frequency) image. In all three experiments, participants were faster to respond to easy images. In 50% of trials in each experiment, the name of the image was directly preceded by a delay; in the remaining trials an equivalent delay was included earlier in the instruction. Participants were quicker to respond when a name was directly preceded by a delay, regardless of whether this delay was filled with a spoken um, was silent, or contained an artificial tone. This effect did not interact with the effect of image difficulty, nor did it change over the course of each experiment. Taken together, our consistent finding that delays of any kind help word recognition indicates that natural delays such as fillers need not be seen as ‘signals’ to explain the benefits they have to listeners' ability to recognise and respond to the words which follow them
A specious unlinking strategy
We show that the following unlinking strategy does not always yield an optimal sequence of crossing changes: first split the link with the minimal number of crossing changes, and then unknot the resulting components
Rich Situated Attitudes
We outline a novel theory of natural language meaning, Rich
Situated Semantics [RSS], on which the content of sentential utterances
is semantically rich and informationally situated. In virtue of its situatedness,
an utterance’s rich situated content varies with the informational
situation of the cognitive agent interpreting the utterance. In virtue of its
richness, this content contains information beyond the utterance’s lexically
encoded information. The agent-dependence of rich situated content
solves a number of problems in semantics and the philosophy of language
(cf. [14, 20, 25]). In particular, since RSS varies the granularity of utterance
contents with the interpreting agent’s informational situation, it
solves the problem of finding suitably fine- or coarse-grained objects for
the content of propositional attitudes. In virtue of this variation, a layman
will reason with more propositions than an expert
Mitochondrial echoes of first settlement and genetic continuity in El Salvador
Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador.
Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas.
Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade
Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools
Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal
or public non-commercial purposes, without charge or further permission, unless otherwise specified. You can freely download the publication in its entirety by visiting the publisher's website
Location of Immunization and Interferon-γ Are Central to Induction of Salivary Gland Dysfunction in Ro60 Peptide Immunized Model of Sjögren's Syndrome
INTRODUCTION: Anti-Ro antibodies can be found in the serum of the majority of patients with Sjögren's syndrome (SS). Immunization with a 60-kDa Ro peptide has been shown to induce SS-like symptoms in mice. The aim of this study was to investigate factors involved in salivary gland (SG) dysfunction after immunization and to test whether the induction of SS could be improved. METHODS: Ro60 peptide immunization was tested in Balb/c mice, multiple antigenic peptide (MAP)-Ro60 and Pertussis toxin (PTX) were tested in SJL/J mice. In addition, two injection sites were compared in these two strains: the abdominal area and the tailbase. Each group of mice was tested for a loss of SG function, SG lymphocytic infiltration, anti-Ro and anti-La antibody formation, and cytokine production in cultured cells or homogenized SG extracts. RESULTS: Ro60 peptide immunization in the abdominal area of female Balb/c mice led to impaired SG function, which corresponded with increased Th1 cytokines (IFN-γ and IL-12) systemically and locally in the SG. Moreover, changing the immunization conditions to MAP-Ro60 in the abdominal area, and to lesser extend in the tailbase, also led to impaired SG function in SJL/J mice. As was seen in the Balb/c mice, increased IFN-γ in the SG draining lymph nodes accompanied the SG dysfunction. However, no correlation was observed with anti-MAP-Ro60 antibody titers, and there was no additional effect on disease onset or severity. CONCLUSIONS: Effective induction of salivary gland dysfunction after Ro60 peptide immunization depended on the site of injection. Disease induction was not affected by changing the immunization conditions. However, of interest is that the mechanism of action of Ro60 peptide immunization appears to involve an increase in Th1 cytokines, resulting in the induction of SG dysfunction
The what and where of adding channel noise to the Hodgkin-Huxley equations
One of the most celebrated successes in computational biology is the
Hodgkin-Huxley framework for modeling electrically active cells. This
framework, expressed through a set of differential equations, synthesizes the
impact of ionic currents on a cell's voltage -- and the highly nonlinear impact
of that voltage back on the currents themselves -- into the rapid push and pull
of the action potential. Latter studies confirmed that these cellular dynamics
are orchestrated by individual ion channels, whose conformational changes
regulate the conductance of each ionic current. Thus, kinetic equations
familiar from physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of channels, these will predict
fluctuations in conductances and stochasticity in the resulting action
potentials. At first glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original Hodgkin-Huxley
equations. This has prompted more than a decade of efforts to capture channel
fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of
these approaches, while intuitively appealing, produce quantitative errors when
compared to kinetic equations; others, as only very recently demonstrated, are
both accurate and relatively simple. We review what works, what doesn't, and
why, seeking to build a bridge to well-established results for the
deterministic Hodgkin-Huxley equations. As such, we hope that this review will
speed emerging studies of how channel noise modulates electrophysiological
dynamics and function. We supply user-friendly Matlab simulation code of these
stochastic versions of the Hodgkin-Huxley equations on the ModelDB website
(accession number 138950) and
http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
- …