14 research outputs found

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Towards a New Paradigm of Non-Captive Research on Cetacean Cognition

    Get PDF
    Contemporary knowledge of impressive neurophysiology and behavior in cetaceans, combined with increasing opportunities for studying free-ranging cetaceans who initiate sociable interaction with humans, are converging to highlight serious ethical considerations and emerging opportunities for a new era of progressive and less-invasive cetacean research. Most research on cetacean cognition has taken place in controlled captive settings, e.g., research labs, marine parks. While these environments afford a certain amount of experimental rigor and logistical control they are fraught with limitations in external validity, impose tremendous stress on the part of the captive animals, and place burdens on populations from which they are often captured. Alternatively, over the past three decades, some researchers have sought to focus their attention on the presence of free-ranging cetacean individuals and groups who have initiated, or chosen to participate in, sociable interactions with humans in the wild. This new approach, defined as Interspecies Collaborative Research between cetacean and human, involves developing novel ways to address research questions under natural conditions and respecting the individual cetacean's autonomy. It also offers a range of potential direct benefits to the cetaceans studied, as well as allowing for unprecedented cognitive and psychological research on sociable mysticetes. Yet stringent precautions are warranted so as to not increase their vulnerability to human activities or pathogens. When conducted in its best and most responsible form, collaborative research with free-ranging cetaceans can deliver methodological innovation and invaluable new insights while not necessitating the ethical and scientific compromises that characterize research in captivity. Further, it is representative of a new epoch in science in which research is designed so that the participating cetaceans are the direct recipients of the benefits

    Distribution, movements and group size of the bottlenose dolphin (Tursiops truncatus) to the south of San Quintín Bay, Baja California, Mexico

    No full text
     Twelve boat-based photoidentification surveys were carried out along the coast to the south of San Quintín Bay, in Baja California, Mexico, from July 1999 to June 2000; effort was 276.76 km and 31.7 h at sea. Twenty-two schools were encountered and 12.9 h of total observation were spent with 242 dolphins in these schools. The average school size was 11 (SD = 8) dolphins, although it is possible that groups are actually smaller; nursing groups were significantly larger (P 70%) were sighted one time or stayed for short periods. A total of 220 different dolphins have been identified in the San Quintín area when these data are combined with those gathered by Caldwell (1992) in 1990; these dolphins probably represent a small part of a larger population. More research on the population biology of the bottlenose dolphin in this and adjacent geographic areas is needed to develop better conservation and management strategies for this important natural resource

    Ranging patterns of bottlenose dolphins living in oceanic waters : implications for population structure

    No full text
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 156 (2008): 179-192, doi: 10.1007/s00227-008-1075-z.Very little is known about the ecology of common bottlenose dolphins (Tursiops truncatus) living in oceanic waters. This study investigated the ranging and residence pattern, of bottlenose dolphins occurring in the Azores (Portugal), the most isolated archipelago in the North Atlantic. Data were collected during standardized boat-based surveys conducted over a 6-year period in an area of approximately 5,400 km2 (main study area). To investigate the extent of movements of individual animals. non-systematic surveys were also conducted outside this area. Only 44 individuals out of 966 identified were frequently sighted within and between years. The remaining individuals were either temporary migrants from within or outside the archipelago, or transients. Resident dolphins showed strong geographic fidelity to the area. Long-distance movements (of almost 300 km), consistent with foraging or exploratory trips. were observed among non-resident dolphins. Home range size was estimated for 31 individuals sighted ≥ 10 times. Range areas of these dolphins varied in size and location, but considerable overlap was observed in the areas used, suggesting the absence of habitat partitioning between resident and non-resident dolphins. Estimates of home range size of bottlenose dolphins in the Azores were found to be considerably larger than those previously reported for this species. It is hypothesized that dolphins living in the Azores carry out extensive movements and have large home ranges in response to the lower density and patchy distribution of prey compared to other areas. The extensive ranging behaviour and the lack of territoriality provide an opportunity for interbreeding between dolphins associated with different islands, thus preventing genetic differentiation within the population of the Azores.This researd was funded by the Portuguese Science and Technology Foundation (FCT). under the CETAMARH project (POCTI/BSF/38991/01 ), by an EU-LlFE program (B4-3200/98/ 509), and by an Interreg program (Interreg IIIBMAC/4.2/A2). We are also grateful to FCT for funding M. A. S. doctoral grant (SFRH/BD/ 8609/2002) and post-doctoral grams (SFRH/BPD/29841/2006), and S. M. M. and M. I. S. research grams through the CETAMARH projec

    Connectivity in the network macrostructure of Tursiops truncatus in the Pelagos Sanctuary (NW Mediterranean Sea): does landscape matter?

    No full text
    The bottlenose dolphin (Tursiops truncatus Montagu, 1821) is a regularly observed species in the Mediterranean Sea, but its network organization has never been investigated on a large scale. We described the network macrostructure of the bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary (a wide protected area located in the north-western portion of the Mediterranean basin) and we analysed its connectivity in relation to the landscape traits. We pooled effort and sighting data collected by 13 different research institutions operating within the Pelagos Sanctuary from 1994 to 2011 to examine the distribution of bottlenose dolphins in the Pelagos study area and then we applied a social network analysis, investigating the association patterns of the photo-identified dolphins (806 individuals in 605 sightings). The bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary is clustered in discrete units whose borders coincide with habitat breakages. This complex structure seems to be shaped by the geo-morphological and ecological features of the landscape, through a mechanism of local specialization of the resident dolphins. Five distinct clusters were identified in the (meta)population and two of them were solid enough to be further investigated and compared. Significant differences were found in the network parameters, suggesting a different social organization of the clusters, possibly as a consequence of the different local specialization
    corecore