70 research outputs found
Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration
The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types
Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC), it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development.</p> <p>Methods</p> <p>We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the <it>KRAS </it>mutation was investigated.</p> <p>Results</p> <p>We detected significant previously undescribed underexpression in CRC for genes <it>SLC26A3</it>, <it>TPM1 </it>and <it>DCN</it>, with a suggested tumour suppressor role. We also describe the correlation between <it>TPM1 </it>and <it>DCN </it>expression and the presence of <it>KRAS </it>mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the <it>TPM1 </it>gene in one case of CRC, but no deletions of <it>DCN </it>and <it>SLC26A3 </it>were found.</p> <p>Conclusion</p> <p>Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the <it>TPM1 </it>gene in a case of CRCs without <it>KRAS </it>mutations, showing that <it>TPM1 </it>might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the <it>TPM1 </it>gene. On the other hand, the correlation of <it>DCN </it>underexpression with the presence of <it>KRAS </it>mutations suggests that <it>DCN </it>expression is affected by the presence of activating <it>KRAS </it>mutations, lowering the amount of the important tumour suppressor protein decorin.</p
Elastogenic Protein Expression of a Highly Elastic Murine Spinal Ligament: The Ligamentum Flavum
Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues
Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region
Abstract Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes
Pervasive Hitchhiking at Coding and Regulatory Sites in Humans
Much effort and interest have focused on assessing the importance of natural
selection, particularly positive natural selection, in shaping the human genome.
Although scans for positive selection have identified candidate loci that may be
associated with positive selection in humans, such scans do not indicate whether
adaptation is frequent in general in humans. Studies based on the reasoning of
the MacDonaldâKreitman test, which, in principle, can be used to
evaluate the extent of positive selection, suggested that adaptation is
detectable in the human genome but that it is less common than in Drosophila or
Escherichia coli. Both positive and purifying natural
selection at functional sites should affect levels and patterns of polymorphism
at linked nonfunctional sites. Here, we search for these effects by analyzing
patterns of neutral polymorphism in humans in relation to the rates of
recombination, functional density, and functional divergence with chimpanzees.
We find that the levels of neutral polymorphism are lower in the regions of
lower recombination and in the regions of higher functional density or
divergence. These correlations persist after controlling for the variation in GC
content, density of simple repeats, selective constraint, mutation rate, and
depth of sequencing coverage. We argue that these results are most plausibly
explained by the effects of natural selection at functional
sitesâeither recurrent selective sweeps or background
selectionâon the levels of linked neutral polymorphism. Natural
selection at both coding and regulatory sites appears to affect linked neutral
polymorphism, reducing neutral polymorphism by 6% genome-wide and by
11% in the gene-rich half of the human genome. These findings suggest
that the effects of natural selection at linked sites cannot be ignored in the
study of neutral human polymorphism
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure
Oxidative stress is one of the causative factors in progression and etiology of age-related cataract. Peroxiredoxin 6 (Prdx6), a savior for cells from internal or external environmental stresses, plays a role in cellular signaling by detoxifying reactive oxygen species (ROS) and thereby controlling gene regulation. Using targeted inactivation of the Prdx6 gene, we show that Prdx6-deficient lens epithelial cells (LECs) are more vulnerable to UV-triggered cell death, a major cause of skin disorders including cataractogenesis, and these cells display abnormal protein profiles. PRDX6-depleted LECs showed phenotypic changes and formed lentoid body, a characteristic of terminal cell differentiation and epithelial-mesenchymal transition. Prdx6â/â LECs exposed to UV-B showed higher ROS expression and were prone to apoptosis compared with wild-type LECs, underscoring a protective role for Prdx6. Comparative proteomic analysis using fluorescence-based difference gel electrophoresis along with mass spectrometry and database searching revealed a total of 13 proteins that were differentially expressed in Prdx6â/â cells. Six proteins were upregulated, whereas expression of seven proteins was decreased compared with Prdx6+/+ LECs. Among the cytoskeleton-associated proteins that were highly expressed in Prdx6-deficient LECs was tropomyosin (Tm)2ÎČ. Protein blot and real-time PCR validated dramatic increase of Tm2ÎČ and Tm1α expression in these cells. Importantly, Prdx6+/+ LECs showed a similar pattern of Tm2ÎČ protein expression after transforming growth factor (TGF)-ÎČ or H2O2 treatment. An extrinsic supply of PRDX6 could restore Tm2ÎČ expression, demonstrating that PRDX6 may attenuate adverse signaling in cells and thereby maintain cellular homeostasis. Exploring redox-proteomics (Prdx6â/â) and characterization and identification of abnormally expressed proteins and their attenuation by PRDX6 delivery should provide a basis for development of novel therapeutic interventions to postpone ROS-mediated abnormal signaling deleterious to cells or tissues
- âŠ