174 research outputs found

    CoExp: A Web Tool for the Exploitation of Co-expression Networks

    Get PDF
    Gene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied. There are multiple ways to perform such analyses with weighted gene co-expression network analysis (WGCNA) amongst one of the most widely used R packages. While managing a few network models can be done manually, it is often more advantageous to study a wider set of models derived from multiple independently generated transcriptomic data sets (e.g., multiple networks built from many transcriptomic sources). However, there is no software tool available that allows this to be easily achieved. Furthermore, the visual nature of co-expression networks in combination with the coding skills required to explore networks, makes the construction of a web-based platform for their management highly desirable. Here, we present the CoExp Web application, a user-friendly online tool that allows the exploitation of the full collection of 109 co-expression networks provided by the CoExpNets suite of R packages. We describe the usage of CoExp, including its contents and the functionality available through the family of CoExpNets packages. All the tools presented, including the web front- and back-ends are available for the research community so any research group can build its own suite of networks and make them accessible through their own CoExp Web application. Therefore, this paper is of interest to both researchers wishing to annotate their genes of interest across different brain network models and specialists interested in the creation of GCNs looking for a tool to appropriately manage, use, publish, and share their networks in a consistent and productive manner

    Photochemical activation of TRPA1 channels in neurons and animals

    Get PDF
    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans

    A randomized controlled trial investigation of a non-stimulant in attention deficit hyperactivity disorder (ACTION): Rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ACTION study (<it>Attention deficit hyperactivity disorder Controlled Trial Investigation Of a Non-stimulant) </it>is a multi-center, double-blind, randomized cross-over trial of the non-stimulant medication, Atomoxetine, in children and adolescents with attention deficit hyperactivity disorder (ADHD). The primary aims are to examine the efficacy of atomoxetine for improving cognition and emotional function in ADHD and whether any improvements in these outcomes are more pronounced in participants with comorbid anxiety; and to determine if changes in these outcomes after atomoxetine are more reliable than changes in diagnostic symptoms of ADHD. This manuscript will describe the methodology and rationale for the ACTION study.</p> <p>Methods</p> <p>Children and adolescents aged 6 - 17 y with ADHD will be enrolled. Clinical interview and validated scales will be used to confirm diagnosis and screen for exclusion criteria, which include concurrent stimulant use, and comorbid psychiatric or neurological conditions other than anxiety. Three assessment sessions will be conducted over the 13-week study period: Session 1 (Baseline, pre-treatment), Session 2 (six weeks, atomoxetine or placebo), and Session 3 (13 weeks, cross-over after one-week washout period). The standardized touch-screen battery, "IntegNeuro™", will be used to assess cognitive and emotional function. The primary measure of response will be symptom ratings, while quality of life will be a secondary outcome. Logistic regression will be used to determine predictors of treatment response, while repeated measures of analysis will determine any differences in effect of atomoxetine and placebo.</p> <p>Results</p> <p>The methodology for the ACTION study has been detailed.</p> <p>Conclusions</p> <p>The ACTION study is the first controlled trial to investigate the efficacy of atomoxetine using objective cognitive and emotional function markers, and whether these objective measures predict outcomes with atomoxetine in ADHD with and without comorbid anxiety. First enrollment was in March 2008. The outcomes of this study will be a significant step towards a 'personalized medicine' (and therefore a more efficient) approach to ADHD treatment.</p> <p>Trial registration</p> <p>Australian and New Zealand Clinical Trials Registry <a href="http://www.anzctr.org.au/ANZCTRN12607000535471.aspx">ANZCTRN12607000535471</a>.</p

    Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    Get PDF
    Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism.-receptor complexes.-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Re-examination of the Controversial Coexistence of Traumatic Brain Injury and Posttraumatic Stress Disorder: Misdiagnosis and Self-Report Measures

    Get PDF
    The coexistence of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) remains a controversial issue in the literature. To address this controversy, we focused primarily on the civilian-related literature of TBI and PTSD. Some investigators have argued that individuals who had been rendered unconscious or suffered amnesia due to a TBI are unable to develop PTSD because they would be unable to consciously experience the symptoms of fear, helplessness, and horror associated with the development of PTSD. Other investigators have reported that individuals who sustain TBI, regardless of its severity, can develop PTSD even in the context of prolonged unconsciousness. A careful review of the methodologies employed in these studies reveals that investigators who relied on clinical interviews of TBI patients to diagnose PTSD found little or no evidence of PTSD. In contrast, investigators who relied on PTSD questionnaires to diagnose PTSD found considerable evidence of PTSD. Further analysis revealed that many of the TBI patients who were initially diagnosed with PTSD according to self-report questionnaires did not meet the diagnostic criteria for PTSD upon completion of a clinical interview. In particular, patients with severe TBI were often misdiagnosed with PTSD. A number of investigators found that many of the severe TBI patients failed to follow the questionnaire instructions and erroneously endorsed PTSD symptoms because of their cognitive difficulties. Because PTSD questionnaires are not designed to discriminate between PTSD and TBI symptoms or determine whether a patient's responses are accurate or exaggerated, studies that rely on self-report questionnaires to evaluate PTSD in TBI patients are at risk of misdiagnosing PTSD. Further research should evaluate the degree to which misdiagnosis of PTSD occurs in individuals who have sustained mild TBI
    corecore