164 research outputs found
Resource-sharing in multiple component working memory
Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the full range of data in the working memory literature. We report 2 experiments that investigated the effects of load manipulations on dual-task verbal temporary memory and spatial processing. Crucially, we manipulated cognitive load around the measured memory span of each individual participant. We report a clear effect of increasing memory load on processing accuracy, but only when memory load is increased above each participant’s measured memory span. However, increasing processing load did not affect memory performance. We argue that immediate verbal memory may rely both on a temporary phonological store and on activated traces in long-term memory, with the latter deployed to support memory performance for supraspan lists and when a high memory load is coupled with a processing task. We propose that future research should tailor the load manipulations to the capacities of individual participants and suggest that contrasts between models of working memory may be more apparent than real
oHSV Genome Editing by Means of galK Recombineering
open8noThis work was supported by European Research Council (ERC) Advanced Grant number 340060, VII framework program to G.
C.-F., by RFO (University of Bologna) to L.M. and T.G, and by Fondi Pallotti to T.G.Since the cloning of the herpes simplex virus (HSV) genome as BAC (bacterial artificial chromosome), the genetic engineering of the viral genome has become readily feasible. The advantage is that the modification of the animal virus genome is carried out in bacteria, with no replication or production of viral progeny, and is separated from the reconstitution or regeneration of the recombinant virus in mammalian cells. This allows an easy engineering of essential genes, as well. Many technologies have been developed for herpesvirus BAC engineering. In our hands the most powerful is galK recombineering that exploits a single marker (galK) for positive and negative selection and PCR amplicons for seamless modification in the desired genome locus. Here we describe the engineering of the HSV recombinant BAC 115 by the insertion of a heterologous cassette for the expression of murine interleukin 12 (mIL12) in the intergenic sequence between US1 and US2 ORFs.embargoed_20201017Laura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-FiumeLaura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-Fium
Effect of ABCB1 and ABCC3 Polymorphisms on Osteosarcoma Survival after Chemotherapy: A Pharmacogenetic Study
Background: Standard treatment for osteosarcoma patients consists of a combination of cisplatin, adriamycin, and methotrexate before surgical resection of the primary tumour, followed by postoperative chemotherapy including vincristine and cyclophosphamide. Unfortunately, many patients still relapse or suffer adverse events. We examined whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes of the drugs used in standard osteosarcoma treatment may predict treatment response. Methodology/Principal Findings: In this study we screened 102 osteosarcoma patients for 346 Single Nucleotide Polymorphisms (SNPs) and 2 Copy Number Variants (CNVs) in 24 genes involved in the metabolism or transport of cisplatin, adriamycin, methotrexate, vincristine, and cyclophosphamide. We studied the association of the genotypes with tumour response and overall survival. We found that four SNPs in two ATP-binding cassette genes were significantly associated with overall survival: rs4148416 in ABCC3 (per-allele HR = 8.14, 95%CI = 2.73-20.2, p-value = 5.1×10 -5), and three SNPs in ABCB1, rs4148737 (per-allele HR = 3.66, 95%CI = 1.85-6.11, p-value = 6.9×10 -5), rs1128503 and rs10276036 (r 2 = 1, per-allele HR = 0.24, 95%CI = 0.11-0.47 p-value = 7.9×10 -5). Associations with these SNPs remained statistically significant after correction for multiple testing (all corrected p-values [permutation test] ≤0.03). Conclusions: Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapyThis work was supported by the AECC (Asociación Española contra el Cáncer), FIS (Fondo de Investigación Sanitaria-Instituto de Salud Carlos III) and the
‘‘Inocente Inocente’’ Foundatio
CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding
In order to identify potential markers of renal cancer, the plasma membrane protein content of renal cell carcinoma (RCC)-derived cell lines was annotated using a proteomics process. One unusual protein identified at high levels in A498 and 786-O cells was CD70 (TNFSF7), a type II transmembrane receptor normally expressed on a subset of B, T and NK cells, where it plays a costimulatory role in immune cell activation. Immunohistochemical analysis of CD70 expression in multiple carcinoma types demonstrated strong CD70 staining in RCC tissues. Metastatic tissues from eight of 11 patients with clear cell RCC were positive for CD70 expression. Immunocytochemical analysis demonstrated that binding of an anti-CD70 antibody to CD70 endogenously expressed on the surface of A498 and 786-O cell lines resulted in the rapid internalisation of the antibody–receptor complex. Coincubation of the internalising anti-CD70 antibody with a saporin-conjugated secondary antibody before addition to A498 cells resulted in 50% cell killing. These data indicate that CD70 represents a potential target antigen for toxin-conjugated therapeutic antibody treatment of RCC
An Inhibitory Effect of Extracellular Ca2+ on Ca2+-Dependent Exocytosis
Aim: Neurotransmitter release is elicited by an elevation of intracellular Ca 2+ concentration ([Ca 2+] i). The action potential triggers Ca 2+ influx through Ca 2+ channels which causes local changes of [Ca 2+] i for vesicle release. However, any direct role of extracellular Ca 2+ (besides Ca 2+ influx) on Ca 2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results: Using photolysis of caged Ca 2+ and caffeine-induced release of stored Ca 2+, we found that extracellular Ca 2+ inhibited exocytosis following moderate [Ca 2+]i rises (2–3 mM). The IC50 for extracellular Ca 2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (,30%) of extracellular Ca 2+ concentration ([Ca 2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca 2+] o. The calcimimetics Mg 2+,Cd 2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca 2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance: As an extension of the classic Ca 2+ hypothesis of synaptic release, physiological levels of extracellular Ca 2+ play dual roles in evoked exocytosis by providing a source of Ca 2+ influx, and by directly regulatin
MRP3: a molecular target for human glioblastoma multiforme immunotherapy.
<p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).</p> <p>Methods</p> <p>We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.</p> <p>Results</p> <p>Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed <it>MRP3 </it>mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined <it>MRP3</it>-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of <it>MRP3 </it>RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).</p> <p>Conclusions</p> <p>Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.</p
Efflux in Fungi: La Pièce de Résistance
Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents
- …