81 research outputs found

    The ρ(1S,2S)\rho(1S,2S), ψ(1S,2S)\psi(1S,2S), ΄(1S,2S)\Upsilon(1S,2S) and ψt(1S,2S)\psi_t(1S,2S) mesons in a double pole QCD Sum Rule

    Full text link
    We use the method of double pole QCD sum rule which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the mesons: ρ(1S,2S)\rho(1S,2S), ψ(1S,2S)\psi(1S,2S), ΄(1S,2S)\Upsilon(1S,2S) and ψt(1S,2S)\psi_t(1S,2S). We also present predictions for the toponiuns masses ψt(1S,2S)\psi_t(1S,2S) of m(1S)=357 GeV and m(2S)=374 GeV.Comment: 14 pages, 11 figures in Braz J Phys (2016

    Exactly Marginal Deformations and Global Symmetries

    Full text link
    We study the problem of finding exactly marginal deformations of N=1 superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the "conformal manifold," is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure

    Sicilian gauge theories and N=1 dualities

    Full text link
    In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ beta-function, and elucidate the counting of marginal deformations. We apply our techniques to N=1 theories obtained by mass deformations of the N=2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them "Sicilian gauge theories." We identify these N=1 theories as compactifications of the six-dimensional A_N (2,0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the N=1 supergravity solutions found by Maldacena and Nunez.Comment: 39 pages, 6 figures; v2: published versio

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding

    Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler

    Full text link
    We construct explicitly a new class of backgrounds in type-IIB supergravity which generalize the baryonic branch of Klebanov-Strassler. We apply a solution-generating technique that, starting from a large class of solutions of the wrapped-D5 system, yields the new solutions, and then proceed to study in detail their properties, both in the IR and in the UV. We propose a simple intuitive field theory interpretation of the rotation procedure and of the meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in particular in relation to the duality cascade in the Klebanov-Strassler solution. The presence in the field theory of different VEVs for operators of dimensions 2, 3 and 6 suggests that this is an important step towards the construction of the string dual of a genuinely multi-scale (strongly coupled) dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE

    Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields

    Get PDF
    ABSTRACT: In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail

    On the structure of quadrilateral brane tilings

    Full text link
    Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral brane tilings and Seiberg duality in terms of certain composite moves within this class.Comment: 57 pages, 22 figure

    Minimum sample size for external validation of a clinical prediction model with a binary outcome.

    Get PDF
    In prediction model research, external validation is needed to examine an existing model's performance using data independent to that for model development. Current external validation studies often suffer from small sample sizes and consequently imprecise predictive performance estimates. To address this, we propose how to determine the minimum sample size needed for a new external validation study of a prediction model for a binary outcome. Our calculations aim to precisely estimate calibration (Observed/Expected and calibration slope), discrimination (C-statistic), and clinical utility (net benefit). For each measure, we propose closed-form and iterative solutions for calculating the minimum sample size required. These require specifying: (i) target SEs (confidence interval widths) for each estimate of interest, (ii) the anticipated outcome event proportion in the validation population, (iii) the prediction model's anticipated (mis)calibration and variance of linear predictor values in the validation population, and (iv) potential risk thresholds for clinical decision-making. The calculations can also be used to inform whether the sample size of an existing (already collected) dataset is adequate for external validation. We illustrate our proposal for external validation of a prediction model for mechanical heart valve failure with an expected outcome event proportion of 0.018. Calculations suggest at least 9835 participants (177 events) are required to precisely estimate the calibration and discrimination measures, with this number driven by the calibration slope criterion, which we anticipate will often be the case. Also, 6443 participants (116 events) are required to precisely estimate net benefit at a risk threshold of 8%. Software code is provided
    • 

    corecore